

STORMWATER MANAGEMENT <u>REPORT</u> for HARRINGTON WATERS LIFESTYLE VILLAGE SENIORS LIVING DEVELOPMENT

MANOR ROAD, HARRINGTON

LOT 2, 4 & 6 IN DP 1219123

Prepared by TATTERSALL LANDER PTY LTD Development Consultants January 2019

CONTENTS

1.0	INTRODUCTION	5
2.0	BACKGROUND INFORMATION	5
3.0	SITE CONTEXT	6
4.0	PROPOSED DEVELOPMENT	7
5.0	WATER QUALITY TARGETS	7
6.0	CONSTRAINTS AND OPPORTUNITIES / BEST PLANNING PRACTICES	-
7.0	SOIL AND WATER MANAGEMENT	
8.0	INTEGRATED WATER CYCLE MANAGEMENT	
9.0	STORMWATER MANAGEMENT - HYDROLOGY	
9.1	1 FLOW CONVEYANCE RESULTS	13
9.2	2 BIO-SWALE SCOUR VELOCITIES	18
9.3	3 PUBLIC SAFETY	18
9.4	4 REGIONAL FLOOD LEVELS	21
10.0	STORMWATER MANAGEMENT – WATER QUALITY MODEL	22
10	.1 BACKGROUND	22
10	.2 MUSIC MODELLING	22
10	.2.1 CLIMATE / RAINFALL	23
10	.2.2 EVAPORATION	24
10	.2.3 NODE PARAMETERS	25
10	.2.4 EXISTING FLOW & POLLUTANT ANALYSIS	26
10	.2.5 PROPOSED DEVELOPMENT FLOW & POLLUTANT ANALYSIS	27
10	.2.6 COMPARISON OF POLLUTANT RESULTS	32
11.0	COSTS	33
12.0	OPERATION AND MAINTENANCE PLAN	34
12	.1 BIOFILTERS	34
12	.2 RAINWATER HARVESTING TANKS	34
13.0	CONCLUSIONS	35
14.0	REFERENCES	36
AF	PENDIX A: DRAINAGE CONCEPT PLAN	37

APPENDIX B: BIOFILTER MAINTENANCE TASKS	. 39
APPENDIX C: PROPOSED LAYOUT & DETAIL PLANS	. 41

LIST OF FIGURES

Figure 1: Locality Diagram	5
Figure 2: Basin 1 - 5 Year ARI Water Elevation	
Figure 3: Basin 2 - 5 Year ARI Water Elevation	16
Figure 4: Basin 1 - 100 Year ARI Water Elevation	17
Figure 5: Basin 2 - 100 Year ARI Water Elevation	17
Figure 6: Hazard Categories (Smith et al, 2014)	19
Figure 7: Adopted Rainfall-Runoff MUSIC Parameters	
Figure 8: Existing State MUSIC Model	27
Figure 9: Proposed Development MUSIC Model	31

LIST OF TABLES

Table 1: Stormwater Quality Targets	7
Table 2: Peak 5 Year ARI Water Levels	14
Table 3: Peak 100 Year ARI Water Levels	15
Table 4: Peak 100 ARI Year Water Levels in Basins	15
Table 5: Intersection Hazard Category	20
Table 6: Bio Swale Hazard Category	21
Table 7: Monthly Areal Potential Evapotranspiration Figures	24
Table 8: Adopted MUSIC Pollutant Generation Parameters	26
Table 9: Filter Area to Impervious Area Comparison	30
Table 9: Comparison of Pre- and Post-Development Pollutant Loads (without Cal	ravan
Park)	32
Table 10: Comparison of Pre- and Post-Development Pollutant Loads (with Carav	/an
Park included)	32

1.0 INTRODUCTION

This report has been prepared to support a development application for a 292 lot Seniors Living subdivision proposal.

The site of the proposed development is comprised of Lots 2, 4 & 6 in DP1219123 and is located on Manor Road at Harrington.

Figure 1: Locality Diagram

2.0 BACKGROUND INFORMATION

The site is currently vacant rural style land on the outskirts of the township of Harrington. The majority of the site is zoned R5 large lot residential, with some accompanying E2 lands surrounding the creek at the south of the site.

The site is adjacent to residentially zoned land developed as part of the Harrington Waters estate to the east, with RU1 lands to the west and north. The northern part of the RU1 lands includes an existing caravan park on the opposite side of Manor Road.

3.0 SITE CONTEXT

The three existing lots are currently vacant and have been substantially cleared in the past. Vegetation is generally a mix of pasture grasses, but it does not appear to currently be actively grazed.

The topography is best described as flat, with levels generally from 2.0m to 2.7m AHD. Soils are a generally a silty sand in nature.

Photo 1: Existing Site Conditions

4.0 PROPOSED DEVELOPMENT

The proposal is for a 292-lot community title subdivision and Seniors Living development, including various community facilities and associated infrastructure including filling, private and public road and drainage construction, and services installation.

It is proposed to address stormwater impacts with a combination of a rainwater harvesting/reuse system, street scale biofilters, constructed wetlands and swales.

5.0 WATER QUALITY TARGETS

In preliminary discussions, Council have indicated the development should meet the pollution reduction targets in Table 1 below:

Gross Pollutants (GP)	90%
Total Suspended Solids (TSS)	Neutral or Beneficial Effect
Total Phosphorus (TP)	Neutral or Beneficial Effect
Total Nitrogen (TN)	Neutral or Beneficial Effect

Table 1: Stormwater Quality Targets

6.0 <u>CONSTRAINTS AND OPPORTUNITIES / BEST PLANNING</u> <u>PRACTICES</u>

Best-planning practices have been considered in the planning process for this site. The silty sand soils and undeveloped nature of the existing site present some significant challenges to meeting Water Quality targets. Additionally, the low-lying nature of the site means significant filling is required to address regional flooding and local drainage considerations. The depth to groundwater also limits some treatment/disposal options.

Early design and modelling efforts concluded that meeting the required water quality targets would not be practical considering the development site on its own. Methods that were investigated include:

- Permeable paving for the central corridor: Treatment benefits for paving the central corridor with permeable paving provided limited benefit whilst increasing cost and ongoing maintenance issues.
- Constructed wetlands at the outlet locations from the site: The high water table and low lying site makes the depths required for bathymetric zones of a constructed wetland unachievable.
- Increased biofilter area:

Further increasing the biofilter area provided limited return on the treatment of water that was able to be directed to them.

However, the existing caravan park directly upstream of the site presents the opportunity to treat currently untreated discharge within the same catchment to ensure the overall project achieves the necessary water quality objectives.

The proposal also seeks to construct an internal drainage system that will double as both water quality and storm flow conveyance. Sections of 'oversized' biofiltration swales (with zero longitudinal grade) are linked via piped culverts under intersecting roads. Refer to design plans by Tattersall Lander (Appendix C) for further details. This will limit the overall gradient of the trunk drainage lines which will in turn reduce imported fill quantities to a point that makes the development viable.

A key concern will be ensuring that flow velocities do not cause scouring damage to the biofilter systems in the base of the swales. This has been addressed via the flat grades, wide cross sections and high roughness values – the flow capacity is provided via additional cross-sectional area rather than grade. Resulting velocities will be discussed in more detail in Section 9 of this report.

7.0 SOIL AND WATER MANAGEMENT

A critical time for increase pollutant loads is during construction, and with this in mind, current practice recommends guidelines from Landcom's "Blue Book". Erosion and sediment control measures should be designed and specified in accordance with the "Blue Book" guidelines, and to Council satisfaction, and be inspected and maintained during the construction phase. This will assist in ensuring adherence to pollutant prevention measures, particularly the removal of suspended solids (sediment).

As the construction footprint of each stage will be in excess of 2,500sq.m, typically it would be expected that a detailed Soil and Water Management Plan would need to be prepared for construction stage prior to release of the Construction Certificate. This would typically include calculations of likely soil loss during construction, instructions on preferred construction sequence and limiting land disturbance, and calculations for the provision and sizing of any temporary sedimentation basin to cover the period of civil works.

8.0 INTEGRATED WATER CYCLE MANAGEMENT

All created lots will be serviced with reticulated water and sewer from the MidCoast Water Services network. There is no reticulated recycled water network available in Harrington.

In line with BASIX and WSUD principles, runoff from future dwelling roof areas is to be directed into rainwater tanks for reuse within the dwelling (toilet and laundry) and external use.

9.0 STORMWATER MANAGEMENT - HYDROLOGY

The nature of urban development is that it can increase the amount of impervious surface in a catchment, which in turn can decrease runoff times and create higher peak flow rates. It is important with new developments that measures are put in place to prevent increases in runoff from the site and resulting downstream flash flooding.

This particular site is in close proximity to the Manning River, and the proposal will include appropriate trunk drainage lines to convey runoff directly to the river without any impact on adjoining properties. Given the critical duration for flooding of the river in this location is significantly longer than the proposed local drainage network, it is not intended to attempt to detain flows back to pre-developed flow rates – the purpose of the two proposed basins is to control and buffer site discharges and velocities in relation to adjoining properties and the sensitive downstream E2 lands.

A detailed 1D node and link XP Storm flood routing model has been prepared to assess the effectiveness of the proposed trunk drainage system.

The model consisted of a series of trapezoidal conduits at 0% grade with a high "Mannings n" roughness value of 0.45 representing the biofilters connected by culverts at minimum grade with trapezoidal conduits and weirs representing the roads crossing the biofilter channels.

Whilst the biofilters are intended to allow infiltration through their base, the infiltration rates over the site are not considered sufficient to provide storm attenuation. For hydrology calculations a conservative approach was taken, assuming the biofilters to already be full to the level of the extended detention depth.

The site was broken up into a series of catchments that drain to the proposed biofilters. Impervious areas were measured directly off the plans with the area of proposed roof added to the catchments.

Impervious areas were modelled with 0.3mm depression storage, 0mm initial and 0mm/hr continuing loss.

Pervious areas were modelled with 0mm depression storage, 0.5mm initial loss with 2.5mm/hr continuing loss.

Rainfall was simulated utilising the Laurenson Method with IFD data sourced from the Greater Taree City Council Handbook of Drainage Criteria.

In consultation with Council engineers, the discharge level for the site has been set to 1.3m AHD as this is the 5 year ARI flood level. A separate Flood Impact Assessment for the development by BMT WBM found that 2100 100yr flood level on the site to be 3.1m AHD at Manor Road and 3m AHD at the Manning River. To increase the capacity of discharge from Basin 1 whilst still being able to maintain cover over the pipe, the outlet pipe has been designed as a 600mm pipe discharging at 1.15m AHD. This has been modelled with a sediment level of

The model was run with three separate scenarios, a Minor Event and two separate scenarios to represent the major event.

150mm through the pipe to represent a discharge level of 1.3m AHD.

Minor Event:

The modelling conditions for the minor event scenario included a range of durations with 5 year ARI discharging to the Manning River with a free outfall at 1.3m AHD. The culverts were then sized to ensure a drainage solution was possible that provided 150mm freeboard in the drainage system during the peak 5 year ARI event.

Major Event:

Two major event scenarios were modelled as the critical duration for the site is much lower than the critical duration for the peak flood levels of the Manning River. The probability of combining the peak 100 year ARI storm event for the site with the peak 2100 100year ARI flood level for the Manning River would have a greater recurrence interval than 100 years.

Both major event scenarios were modelled to have a 50% blockage factor in the culverts by halving the culvert width on the conduit data in XP storm from the design conduits.

The first major event scenario was a 100 year ARI storm event over the site with a 1.3m AHD free outfall. This scenario represents the peak stormflow for the site.

The second major event scenario was a 5 year ARI storm event over the site with a fixed tail water of 3m AHD representing the peak 2100 100yr flood level for the Manning River. This scenario represents a local minor event occurring at the site whilst there was also a peak 2100 100 year ARI regional flood for the Manning River.

The peak water level for the 100 year ARI was used to determine the minimum floor level for the houses in the corresponding streets.

Critical duration events varied across the network, and typically were the shorter events higher up the catchment and longer durations down in the outlet basins.

9.1 FLOW CONVEYANCE RESULTS

As the site discharges directly to a large water body (i.e the Manning River), On-Site Detention was not required and pre and post developed peak flows were not compared.

The model was used to ensure 5 year ARI events were contained in the pit, pipe and channel system as shown by Table 2.

For the 100 year ARI events the model was used to determine minimum floor levels throughout the site and to check that the detention basins prevented uncontrolled flows into neighbouring properties during a 100 year event where flooding was not already occurring. This is shown by Table 3 and Table 4.

Intersection	Road Level (m AHD)	5 Year Water Level (m AHD)	Freeboard Achieved (mm)
Road 2 & 4	3.2	2.909	291
Road 2 & 5	3.13	2.902	228
Road 2 & 6	3.06	2.883	177
Road 2 & 7	2.99	2.782	208
Road 2 & 8	2.92	2.621	299
Road 2 & 9	2.8	2.519	281
Road 2 & 3	2.9	2.456	444
Road 2 Public to Private	2.92	2.341	579
Road 3 & 4	3.185	2.881	304
Road 3 & 5	3.125	2.879	246
Road 3 & 6	3.065	2.787	278
Road 3 & 7	3.005	2.71	295
Road 3 & 8	3.095	2.723	372
Road 3 & 9	2.945	2.663	282
Road 3 & 11	2.885	2.596	289
Road 2(Private) & 4	3.18	2.839	341
Road 2(Private) & 5	3.12	2.839	281
Road 2(Private) & 12(North)	3.06	2.824	236
Road 2 (Private) & 12(South)	3	2.786	214
Road 2 (Private) & 11	2.94	2.661	279
Road 2 (Private) & 10	2.88	2.449	431

Table 2: Peak 5 Year ARI Water Levels

Intersection	Peak 100 Year Water Level - 1.3m AHD Free Outfall (m AHD)	Peak 100 Year Water Level - 3m AHD Tail Water	Minimum Floor Level (m AHD)
Road 2 & 4	3.191	3.181	3.69
Road 2 & 5	3.187	3.196	3.70
Road 2 & 6	3.139	3.147	3.65
Road 2 & 7	3.071	3.089	3.59
Road 2 & 8	3.005	3.048	3.55
Road 2 & 9	2.887	3.03	3.53
Road 2 & 3	3.064	3.13	3.63
Road 2 Public to Private	3.031	3.085	3.59
Road 3 & 4	3.257	3.248	3.76
Road 3 & 5	3.252	3.243	3.75
Road 3 & 6	3.198	3.204	3.70
Road 3 & 7	3.154	3.202	3.70
Road 3 & 8	3.142	3.195	3.70
Road 3 & 9	3.105	3.161	3.66
Road 3 & 11	3.124	3.176	3.68
Road 2(Private) & 4	3.213	3.211	3.71
Road 2(Private) & 5	3.202	3.199	3.70
Road 2(Private) & 12(North)	3.167	3.166	3.67
Road 2 (Private) & 12(South)	3.141	3.146	3.65
Road 2 (Private) & 11	3.087	3.123	3.62
Road 2 (Private) & 10	3.059	3.105	3.61

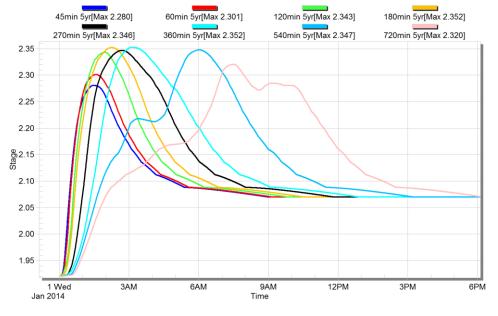
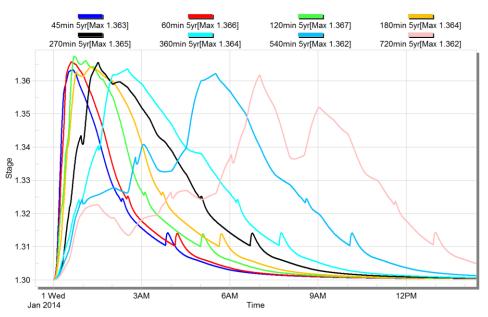
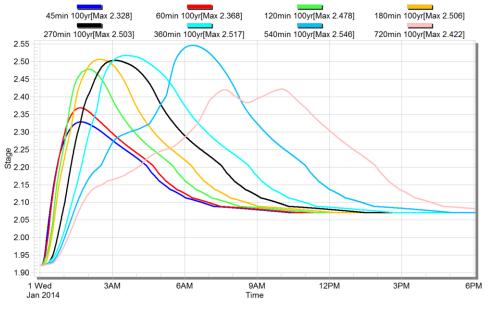

Table 3: Peak 100 Year ARI Water Levels

Table 4: Peak 100 ARI Year Water Levels in Basins

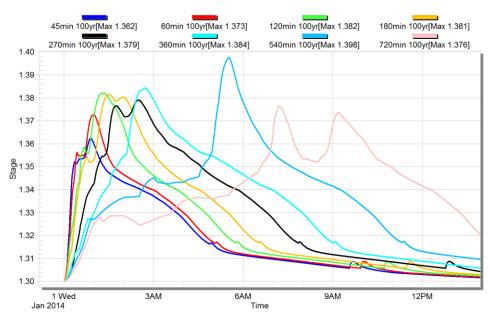
	Discharge Level (m AHD)	Overflow Level (m AHD)	Peak 5 year Water Level (m AHD)	Peak 100 year water level - Free Outfall (m AHD)
Basin 1	1.92	2.65	2.352	2.546
Basin 2	1.3	1.5	1.367	1.398


Figure 2 through to Figure 5 below show the basin elevations. Note that Basin 1 does not completely empty due to the 150mm sediment depth conservatively applied to the whole of the discharge pipe rather than just up to 1.3m AHD.

Basin 1 - 5 Year ARI Water Elevation - Free Outfall



Basin 2 - 5 Year ARI Water Elevation - Free Outfall


Figure 3: Basin 2 - 5 Year ARI Water Elevation

Basin 1 - 100 Year ARI Water Level - Free Outfall

Basin 2 - 100 Year ARI Water Elevation - Free Outfall

Figure 5: Basin 2 - 100 Year ARI Water Elevation

9.2 BIO-SWALE SCOUR VELOCITIES

WSUD Engineering Procedures published by Melbourne Water states that velocities in biofiltration swales should be limited to 0.5 m/s for the five-year ARI event and 1.0 m/s for flows up to the 100-year ARI.

The maximum 5yr event velocities seen in any of the biofilter swales in the are around 0.07m/s with a corresponding depth ranging between 0.85m and 0.55m (above filter base). The equivalent 1% ARI results were around 0.1m/s and 1.2m deep. Both values are well below the target values so scour / sediment washout should not be an issue.

9.3 PUBLIC SAFETY

The proposed design requires the roadside swales to transfer both the minor and major design storms' flows. Significantly flat grades and wide cross sections will ensure low velocities (as described above), but will also result in some larger depths in the major storm event. With floor levels/road levels fixed with the regional flood level and the trunk drainage falling through the site, in the major storm event the swales will actually resemble a string of basins, linked by submerged culverts.

The swales include several design features that will help to ensure public safety;

- Safe Batters Generally, the side of each swale adjacent to the road has been graded at 1(V):6(H) to allow safe egress if anyone accidentally enters the waters during a major storm event. Steeper batters (typically 1(V):3(H) and 1(V):4(H)) exist on the far side of the swale, and will abut fencing to prevent access,
- Flat grades/wide sections conforming to the character of the existing site, the swales will feature very flat grades. This necessitates a wide cross section in order to provide flow capacity. Combined with the high roughness values due to the level of landscaping proposed, velocities will be very low, even in major storm events,

- Well defined edges Generally speaking the streets are straight or the swales are on the inside of the curve, reducing the likelihood of vehicles accidentally turning in to a flooded swale,
- Landscaping Swales will also double as landscape areas, which will include tree plantings and dense macrophyte plantings, so even under major flood conditions the biofilters will provide a clear visual and tactile delineation between the roadway and the deeper drainage channel. People entering a flooded swale will be able to use the vegetation to assist with orientation and stability as they attempt to exit the water,
- Alternate Routes Generally speaking the grid-like street pattern provides alternative access routes if a particular road crossing becomes flooded by extreme flows or culvert blockages. This should ensure there is always another safe route, and pedestrians and vehicles are not forced to cross flooded roadways.

Chapter 7, Book 6 of ARR 2016 describes several methods for determining flood hazard categories and refers to work done by Smith et al, 2014 shown below in Figure 6.

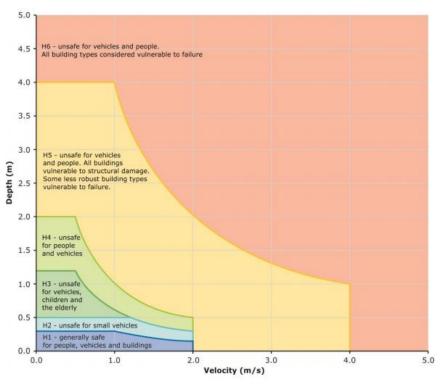


Figure 6: Hazard Categories (Smith et al, 2014)

These categories were used to assess the hazard of water flowing over the intersections in a 1 in 100 year ARI event. As shown in

Table 5 below shows that the flows over these intersections are both low velocity and low depth and as such are classed with a hazard category of "H1 – Generally safe for people, vehicles and buildings"

Intersection	Peak 100 Year Velocity (m/s)	Peak 100 Year Depth (m)	Velocity x Depth	Hazard Category
Road 2 & 4	0	-0.009	0.00	H1
Road 2 & 5	0.454	0.066	0.03	H1
Road 2 & 6	0.57	0.087	0.05	H1
Road 2 & 7	1.128	0.099	0.11	H1
Road 2 & 8	1.099	0.128	0.14	H1
Road 2 & 9	0.75	0.23	0.17	H1
Road 2 & 3	0	0.23	0.00	H1
Road 2 Public to Private	1	0.165	0.17	H1
Road 3 & 4	0.362	0.072	0.03	H1
Road 3 & 5	0.616	0.127	0.08	H1
Road 3 & 6	0.711	0.139	0.10	H1
Road 3 & 7	0.724	0.197	0.14	H1
Road 3 & 8	0.722	0.081	0.06	H1
Road 3 & 9	1.066	0.25	0.27	H1
Road 3 & 11	1.057	0.276	0.29	H1
Road 2(Private) & 4	0.171	0.033	0.01	H1
Road 2(Private) & 5	0.457	0.082	0.04	H1
Road 2(Private) & 12(North)	0.512	0.107	0.05	H1
Road 2 (Private) &				
12(South)	1.1	0.146	0.16	H1
Road 2 (Private) & 11	1.087	0.183	0.20	H1
Road 2 (Private) & 10	1.087	0.225	0.24	H1

Table 5: Intersection Hazard Category

For the proposed flow conveyance bio swales (labelled in Appendix A), velocity is very low due to the flat gradient but the depths are much greater. This has resulted in a higher hazard category for these areas as shown in

Table 6. These higher categories are deemed acceptable as entry for people and vehicles is not intended. Additionally the design features noted at the start of the chapter allow for distinction of these areas and safe egress as water levels begin to rise.

Bio Swale	Peak 100 Yr Velocity (m/s)	Peak 100 Yr Depth (m)	Velocity x Depth	Hazard Category
А	0.017	1.066	0.018	H3
В	0.023	1.087	0.025	H3
С	0.053	1.099	0.058	Н3
D	0.062	1.128	0.070	Н3
E	0.021	1.152	0.024	H3
F	0.063	1.164	0.073	Н3
G	0.088	1.222	0.108	H4
Н	0.096	1.256	0.121	H4
1	0.083	1.301	0.108	H4
J	0.106	1.330	0.141	H4
К	0.095	1.206	0.115	H4
L	0.008	1.102	0.009	H3
Μ	0.026	1.127	0.029	H3
Ν	0.029	1.166	0.034	H3
0	0.032	1.203	0.038	H4
Р	0.028	1.245	0.035	H4
Q	0.029	1.285	0.037	H4

Table 6: Bio Swale Hazard Category

9.4 REGIONAL FLOOD LEVELS

A separate Flood Impact Assessment for the development by BMT WBM found that 2100 100yr flood level on the site to be 3.1m AHD at Manor Road and 3m AHD at the Manning River. In consultation with the DCP and Council engineers, it is proposed to fill the site with the following criteria;

- Minimum future Finished Floor Levels will need to be 3.6m AHD (0.5m freeboard above the flood planning level). As such the minimum fill level on each lot has been designed to be at least 3.46m AHD, to allow direct slab-on-ground construction with no further earthworks.
- All roads (private and public) to be at least 2.7m AHD to limit the maximum 2100 100yr flood depth to 0.4m.

Additionally, the controlling downstream discharge level has been set at 1.3m AHD – the 2100 Mean High Water Mark.

10.0 STORMWATER MANAGEMENT – WATER QUALITY MODEL

10.1 BACKGROUND

The quality of runoff generated by the site is important to ensure the preservation of the downstream environments as an increased proportion of impervious area can lead to a subsequent increase in the quantities of phosphorus and nitrogen entering potential storm water runoff. The aim of this section of the study is to determine what measures need to be undertaken as part of this development to meet the water quality objectives set out in Table 1 in Section 5 of this report.

10.2 MUSIC MODELLING

MUSIC is the Model for Urban Stormwater Improvement Conceptualisation, developed by the Cooperative Research Centre for Catchment Hydrology. MUSIC provides the ability to model both quality and quantity of runoff generated by catchments. Therefore, MUSIC can simulate annual stormwater volumes, and expected annual pollutant loadings.

MUSIC is designed to model stormwater runoff systems in urban catchments. It is used to simulate a range of temporal and spatial scales. Catchment modelling can be performed for areas up to 100 km², with times steps from 6 minutes to 24 hours to match the range of spatial scale. This enables long term modelling of continuous historical rainfall data from pluviograph sources and reflects the ability to account for temporal variation in data for an annual rainfall series directly.

MUSIC also has the ability to model a number of treatment devices and measure their effectiveness in terms of the quantity and quality of runoff downstream. This allows determination of the degree of reduction in annual pollutant loadings.

It is important to note that the MUSIC simulation relies heavily on input variables and it is usually recommended that MUSIC models be calibrated to local conditions wherever possible. When calibration is not possible default values can be used, or

variables can be sourced from values recommended for stormwater modelling in NSW from a technical report prepared for the DECC by the Co-operative Research Centre titled "Stormwater Flow and Quality, and the Effectiveness of Non-Proprietary Stormwater Treatment Measures" (Fletcher et al, 2004).

Given the scale of the proposed development site and hence the MUSIC model, it was determined to be unreasonable to perform a calibration in this instance.

10.2.1 CLIMATE / RAINFALL

To accurately model a site of this size, continuous rainfall record spanning at least five years with a six minute timestep is required. Per the recommendations of the 2010 Draft NSW MUSIC Modelling guidelines, rainfall data was obtained from the Bureau of Meteorology in the form of a historic pluviograph record from the Taree rainfall gauge. It is situated approximately 13km from the site and is of similar elevation and temporal pattern.

In accordance with the Draft MUSIC Modelling Guidelines, eight years of data between the dates of 1/1/1967 and 30/12/1975 was chosen. This data produced a mean annual rainfall of 1201mm. It was noted that the long term average rainfall (obtained from the Bureau of Meteorology) for Harrington (Oxley Anchorage Caravan Park, now closed) is 1338mm, and the Council template released recently has a mean value of 1234mm.

For the purpose of this report, all rainfall events in the nominated eight year period have been modelled.

10.2.2 EVAPORATION

To accurately model the outcome of water quality treatment measures, monthly potential evapotranspiration (PET) data is required. Monthly average areal potential evapotranspiration values were read from maps in the 'Climate Atlas of Australia, Evapotranspiration' (BoM, 2001), and are displayed below in Table 7:

Month	Potential Evapotranspiration (mm)
January	180
February	135
March	135
April	90
Мау	65
June	50
July	50
August	70
September	100
October	135
November	150
December	165
Total	1325

Table 7: Monthly Areal Potential Evapotranspiration Figures

10.2.3 NODE PARAMETERS

The MUSIC model was used to simulate the pollutant export generated during an eight year period of average rainfall. Geotechnical investigations indicate that the predominant soil types on site is silty sand. This corresponds with the rainfall-runoff parameters for Loamy Sand soils which were adopted from Section 3.6.4.3 of the Draft NSW MUSIC Modelling Guidelines (2010) and typical pollutant concentrations derived from Fletcher et al. The adopted parameters can be seen in Figure 7 and Table 8 below.

Note that a Rainfall Threshold of 1.50 mm/day was adopted for the "Sealed Road" node and 0.30 mm/day was adopted for the "Roof" node per Table 3.6 in the Draft NSW MUSIC Modelling Guidelines (2010). A Rainfall Threshold of 1.00 mm/day adopted for all other nodes.

ainfall-Runoff Parameters	
Impervious Area Properties	
Rainfall Threshold (mm/day)	1.00
Pervious Area Properties	
Soil Storage Capacity (mm)	139
Initial Storage (% of Capacity)	25
Field Capacity (mm)	69
Infiltration Capacity Coefficient - a	360.0
Infiltration Capacity Exponent - b	0.50
Groundwater Properties	
Initial Depth (mm)	10
Daily Recharge Rate (%)	100.00
Daily Baseflow Rate (%)	50.00
Daily Deep Seepage Rate (%)	0.00

Figure 7: Adopted Rainfall-Runoff MUSIC Parameters

	Rural- residential	Unsealed Road	Residential	Roof	Road
Baseflow TSS Mean (mg/L)	14	16	16	-	16
Stormflow TSS Mean (mg/L)	90	1000	140	20	270
Baseflow TP Mean (mg/L)	0.06	0.14	0.14	-	0.14
Stormflow TP Mean (mg/L)	0.22	0.5	0.25	0.13	0.5
Baseflow TN Mean (mg/L)	0.9	1.3	1.3	-	1.3
Stormflow TN Mean (mg/L)	2	2.2	2	2	2.2

Table 8: Adopted MUSIC Pollutant Generation Parameters

10.2.4 EXISTING FLOW & POLLUTANT ANALYSIS

The existing site was modelled to simulate the current pollutant loads from the site. The majority of the site was modelled as a 'rural-residential' landuse, with additional nodes to represent the existing gravel access driveways on the site ('unsealed road' landuse, 50% impervious) and the portion of the existing caravan park draining to Manor Road ('residential' landuse, 60% impervious).

Generally speaking the existing silty sand soils mean there is little runoff and thus little pollution generated from the site.

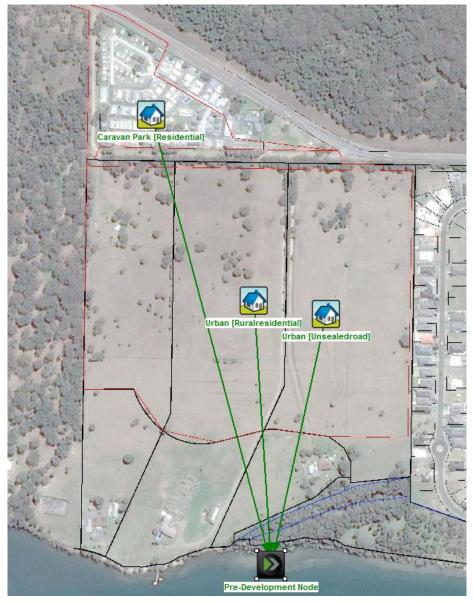


Figure 8: Existing State MUSIC Model

10.2.5 PROPOSED DEVELOPMENT FLOW & POLLUTANT ANALYSIS

Concerted efforts (including detailed MUSIC modelling) were made to try and achieve the required NorBE targets onsite, but this proved impractical given the low target levels calculated from the existing site.

In consultation with Council, it was agreed that treatment of external upstream catchment flows would be undertaken in addition to onsite treatments, to achieve an overall NorBE result.

The proposed development was modelled to determine expected pollutant loads and the effectiveness of the proposed water treatment measures. The catchment was broken up into different areas depending on the surface type, including;

- Roofs areas (measured directly off architectural design plans for the largest housing option for each lot), and modelled as "Roof" nodes with 100% impervious area;
- All road areas (measured directly off design plans) were modelled as "Sealed Road" nodes with the percentage impervious area calculated based from the measured pavement area and an estimated 14sq.m/lot driveway in the verge. The remaining pervious percentage consists of the landscaped verge area.
- The remaining urban area (open space, landscape areas and public reserve) were modelled as residential nodes with the percentage impervious estimated from the remaining driveway area (estimated 30sq.m/lot);

Modelled treatment nodes include;

 Rainwater tanks; The development proposes to build large below-ground rainwater storage and reuse tanks. Each will be a standalone system on an individual block collecting roof waters only, with overflow to an inter-allotment drainage line. They are modelled with 10kL capacity. Captured water has been modelled for reuse in toilet, laundry and external uses only. Internal reuse rates of 0.25kL/day/dwelling were adopted for a dwelling with 1-2 occupants from Table 3-12 in the 2010 Draft NSW MUSIC Modelling Guidelines. An external reuse rate of 112kL/day/dwelling was adopted (distributed by PET minus Rainfall).

For the hotel and clubhouse areas an internal reuse rate of 0.125kL/day/ET were adopted for toilet use only in a dwelling with 1-2 occupants from Table 3-12 in the 2010 Draft NSW MUSIC Modelling Guidelines. Based off MidCoast Water's Equivalent Tenement Policy this rate use been adjusted by a rate of 0.4/unit for the hotel and .0015/sq.m for the clubhouse.

It has been assumed that 100% of the roof areas will be connected to the tanks;

 Biofiltration swales; The trunk drainage corridor has been modified to insert biofiltration systems in the base of each swale. This will offer treatment to runoff directed from the adjacent roads, plus piped inflow from each cross street (which will include rainwater tank overflows and pervious area runoff). Features include a 0.3m detention depth and 0.4m filter depth and an unlined base that will allow discharge via infiltration.

The percentage of Filter Area to Impervious Area is shown in Table 9 below for each biofilter catchment. Note that the biofilters with a low percentage are typically in the top of the catchment with untreated overflow flowing to lower biofilters with a larger percentage. The drainage concept plan in Appendix A shows the labelled biofilters referred to in Table 9.

- Constructed Wetland; The buffer strip across the Manor Road frontage of the site will be utilised as a constructed wetland to treat water from Manor Road (including runoff from the caravan park opposite) as well as the 26 dwelling sites proposed adjacent.
- Buffer strips and grassed swales; The southern section of Road 2 will be constructed as one-way crossfall with a concrete edge strip, grassed verge and drainage swale on the low side to convey this water around to proposed 'Basin 2'.

Note: Basin 1 and Basin 2 have been proposed primarily for detention, flow conveyance and peak flow buffering, and are not specifically configured as constructed wetlands. They will however have permanent depths of 0.45m and 0.3m respectively and will be planted with complete macrophyte coverage. It is expected these will provide some additional water quality benefits, but neither have been included in the MUSIC modelling.

Bio	Filter Area (ha)	Imp A (ha)	Filter A/Imp A
А	0.0145	0.384	4%
В	0.0145	0.380	4%
С	0.013	0.387	3%
D	0.0312	0.354	9%
E	0.0093	0.913	1%
F	0.0213	0.750	3%
G	0.0132	0.536	2%
н	0.0125	0.734	2%
1	0.0276	0.509	5%
J	0.048	0.607	8%
К	0.0208	0.592	4%
L	0.0431	0.528	8%
М	0.024	0.463	5%
N	0.0233	0.418	6%
0	0.0145	0.471	3%
Р	0.0223	0.394	6%
Q	0.0358	0.757	5%
R	0.0053	0.274	2%
S	0.0053	0.217	2%
Т	0.0059	0.279	2%
U	0.086	0.357	24%

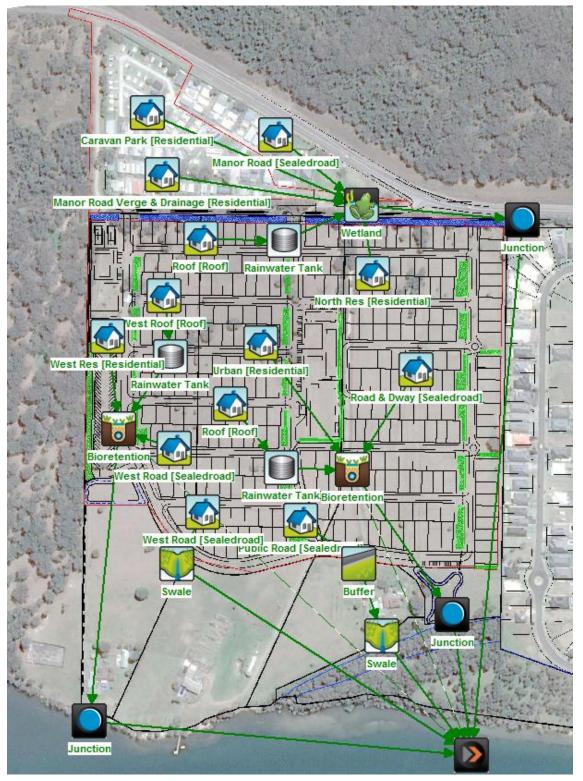


Figure 9: Proposed Development MUSIC Model

10.2.6 COMPARISON OF POLLUTANT RESULTS

Pre- and post-development pollutant loads are compared in the tables below to ensure that the Stormwater Quality Targets have been met. Table 10 shows the effectiveness of the proposed treatment measures if the external caravan park site was not included. As the caravan site to the North will flow through one of the proposed treatment measures this has been included in the model resulting in a treatment train effectiveness as shown in Table 11 demonstrating that the development will create a Neutral or Beneficial Effect on water quality.

Table 10: Comparison of Pre- and Post-Development Pollutant Loads(without Caravan Park)

	Pre-Developed	Post-Developed	NoBE Compliant	Percentage Shortfall
TSS (kg/yr)	8590	1560	Yes	N/A
TP (kg/yr)	11.8	10.8	Yes	N/A
TN (kg/yr)	115	119	No	3%
GP (kg/yr)	179	0	Yes	N/A

* NoBE = Neutral or Beneficial Effect

Table 11: Comparison of Pre- and Post-Development Pollutant Loads			
(with Caravan Park included)			

	Pre-Developed	Post-Developed	NoBE Compliant
TSS (kg/yr)	12900	4100	Yes
TP (kg/yr)	19.3	16.2	Yes
TN (kg/yr)	173	168	Yes
GP (kg/yr)	889	0	Yes

* NoBE = Neutral or Beneficial Effect

11.0 <u>COSTS</u>

Installation and establishment of all WSUD devices will be undertaken at the developer's expense. Responsibility for ongoing operation and maintenance will be fall variously with the village operators (private road biofilters) and individual owners (rainwater harvesting tanks & pumps). As no costs are to be incurred by Council, a detailed cost analysis has not been provided in this report.

12.0 OPERATION AND MAINTENANCE PLAN

12.1 BIOFILTERS

The biofilter systems are private assets and will need to be maintained as part of the regular maintenance work by village ground staff. Regular maintenance is required to ensure water treatment measures continue to operate in an effective way. These tasks should be performed every three months or after heavy storm events. The maintenance schedule in Appendix B has been prepared as a typical template to direct maintenance staff undertaking routine maintenance and is based on Raingardens and Bioretention Tree Pits Maintenance Plan Example, prepared by the Facility for Advancing Water Biofiltration, Monash University. Relevant sections have been reproduced and/or modified for the specific site conditions.

Is it expected that the finalisation of the biofiltration systems will be deferred until the building construction is essentially completed, ensuring house building activities do not compromise the newly constructed WSUD devices. All biofilter maintenance activities will need to commence as soon as biofilters are planted and brought online and continue for the life of the development.

12.2 RAINWATER HARVESTING TANKS

The individual below-ground tanks will be the responsibility of each individual owner to maintain, in a similar way as other smaller housing rainwater tanks. This includes checking and cleaning gutters, any first flush devices and inlet strainers regularly (quarterly), servicing the pump system as recommended by the pump supplier (typically bi-annually) and irregular tank cleaning and desludging (as required).

13.0 CONCLUSIONS

The results derived from modelling procedures indicate that long term water quality and quantity constraints are appropriately addressed in the proposed development, through the following measures:

- Construction of unlined roadside biofiltration swales,
- Construction of a wetland across the Manor Road frontage to treat untreated upstream catchment waters,
- Installation of min. 10kL rainwater tanks with each proposed dwelling.

More so, the modelling demonstrates that the development will actually have a positive impact on stormwater pollutant levels. From a stormwater quality and quantity perspective, approval is recommended.

14.0 <u>REFERENCES</u>

Draft NSW MUSIC Modelling Guidelines, 2010, BMT WBM

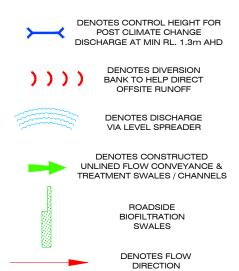
Music Version 5.0 User Manual, 2011, eWater

Policy 11: Land Development Guidelines, Section 13 Water Sensitive Urban Design, 2007, Gold Coast Council

Stormwater Flow and Quality, and the Effectiveness of Non-Proprietary Stormwater Treatment Measures, 2004, Fletcher et al

WSUD Engineering Procedures: Stormwater, 2005, Melbourne Water

Grantley, S and Ron, C, 2016, Safety Design Criteria – Flood Hydraulics, Book 6 in Australian Rainfall and Runoff - A Guide to Flood Estimation, Commonwealth of Australia


Smith G P, Davey E K, and Cox R J (2014) Flood Hazard UNSW Australia Water Research Laboratory Technical Report 2014/07 30 September 2014.

APPENDIX A: DRAINAGE CONCEPT PLAN

LEGEND

EPT PL	AN	COUNCIL MID COAST	2180015	RENCE
IFESTYLE VILLAGE RINGTON ROAD DP 1219123		PARISH	SHEET SIZE	AЗ
		SCALE 1:4000 on A3	SHEE'	Г No.
		DATE : Plo	lotted 10:51 18/01/19	
	COMPUTER FILE : S:\projects\Harrington\dwg\217154_Harrington DA Plans.dwg			

APPENDIX B: BIOFILTER MAINTENANCE TASKS

A. Filter Media Tasks

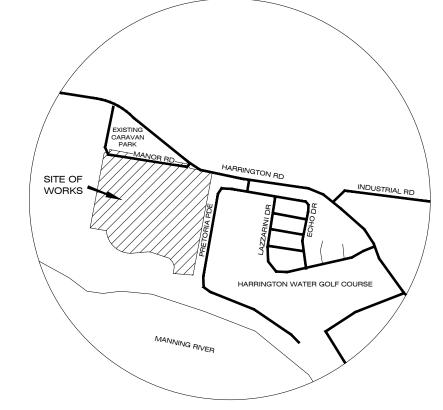
Sediment	Remove sediment build up from the surface of bioretention swales
Deposition	Frequency – 3 monthly after rain
Holes or	Infill any holes in the filter media. Check for erosion or scour and repair,
scour	provide energy dissipation (rocks & pebbles etc) if necessary
	Frequency – 3 monthly after rain
Filter media	Inspect for the accumulation of an impermeable layer (such as oily or clayey
surface	sediment) that may have formed on the surface of the filter media. A
porosity	symptom may be that water remains ponded in the swale for more than a
	few hours after a rain event. Repair minor accumulations by raking away
	any mulch on the surface and scarifying the surface of the filter media
	between plants
	Frequency – 3 monthly after rain
Litter Control	Check for litter (including organic litter) in and around bioretention swales.
	Remove both organic and anthropogenic litter to ensure flow paths and
	infiltration through the filter media are not hindered.
	Frequency – 3 monthly after rain

B. Horticultural Tasks

Pests and	Assess plants for disease, pest infection, stunted growth or senescent
Diseases	plants. Treat or replace as necessary. Reduced plant density reduces
	pollutant removal and infiltration performance
	Frequency – 3 monthly after rain
Maintain	Inspect condition of all plants. Replace and dead plants immediately to
original plant	maintain a minimum density of 4 plants per square metre
densities	Frequency – 3 monthly after rain
Drought /	In periods of prolonged drought or extreme heat, the condition of plantings
Extreme Heat	and site lawn coverage should to be monitored for signs of stress. Watering
	may be required to ensure plant survival
	Frequency – As required

Weeds	It is important to identify the presence of any rapidly spreading weeds as
	they occur. The presence of such weeds can reduce dominate species
	distributions and diminish aesthetics. Weed species can also compromise
	the system's long term performance. Inspect for and manually remove weed
	species. Application of herbicide should be limited to a wand or restrictive
	spot spraying due to the fact that the swales are directly connected to the
	stormwater system
	Frequency – 3 monthly after rain
Grassed	Grassed buffer strips treat runoff as it flows off the roads, before it enters
buffer strip	the bioretention swales. Maintaining a healthy grass cover is important, but
	the use of fertilisers should be kept to a minimum given their proximity to
	the drainage network
Lawn	Healthy site grass coverage is important for pollutant treatment, topsoil
Fertiliser	erosion control and aesthetics. However, if not correctly used, fertilisers can
	damage the downstream environment. A low Phosphorus fertiliser with
	restricted leaching properties such as a Fused Calcium Magnesium
	Phosphate or TNN Industries 'Formula 1', or equivalent is ideal. The
	application of fertiliser should be restricted to a maximum of twice a year

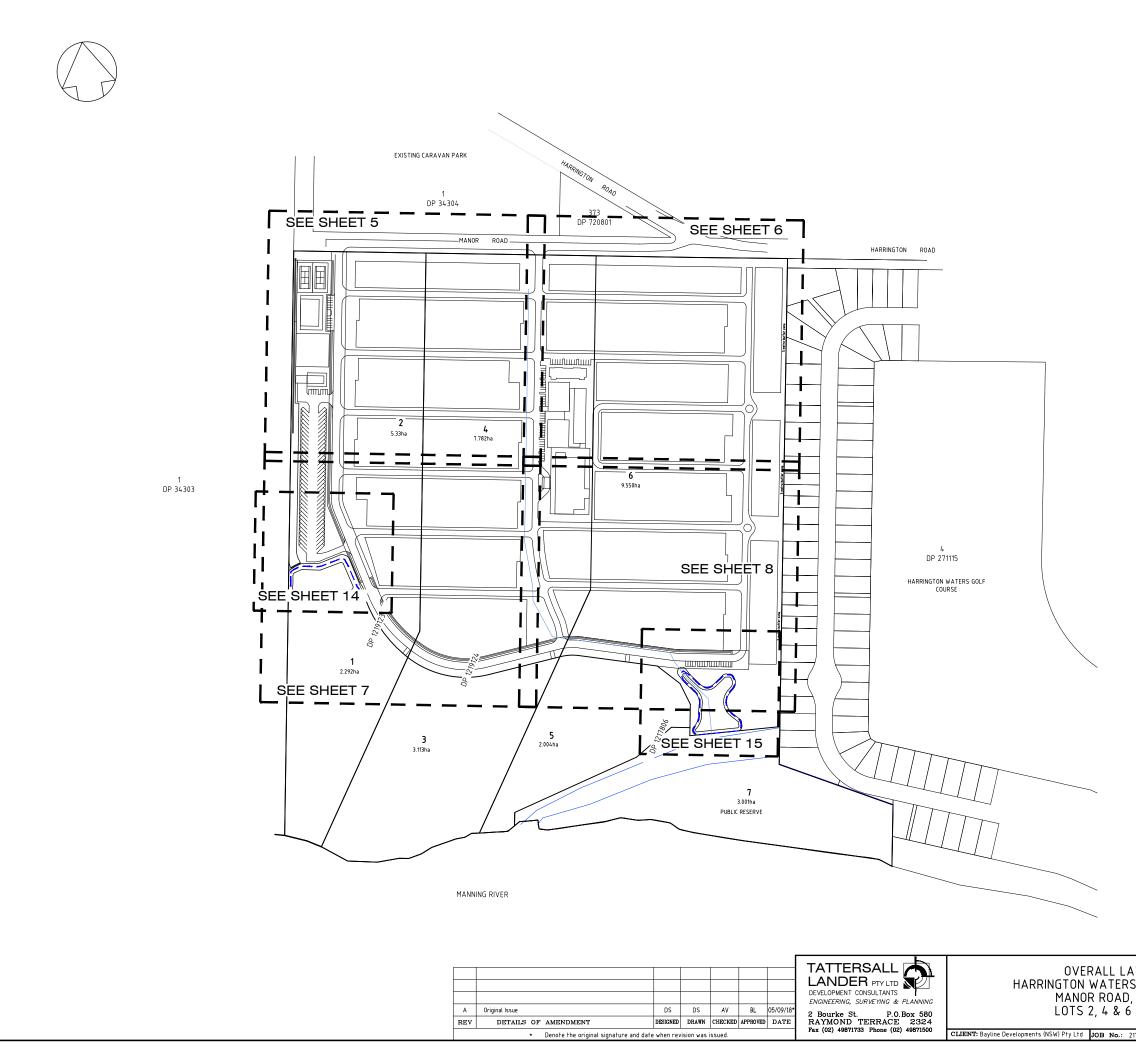
C. Drainage Tasks


Perforated	Ensure that perforated pipes are not blocked to prevent filter media and
Pipe	plants from becoming waterlogged. A small steady clear flow of water may
	be observed discharging from the perforated pipe at its connection into the
	downstream pit some hours after rainfall. Note that smaller rainfall events
	after dry weather may be completely absorbed by the filter media and not
	result in flow. Remote camera (eg CCTV) inspection of pipelines for
	blockage and structural integrity could be useful. Flushing of lines from the
	flushing points may be required.
	Frequency – 6 monthly after rain
High flow	Ensure inflow areas and grates over pits are clear of litter and debris and in
inlet pits,	good and safe condition. A blocked grate would cause nuisance flooding of
overflow pits	adjoining areas. Inspect for dislodged or damaged pit covers and ensure
and other	general structural integrity. Remove sediment from pits and entry sites
stormwater	(likely to be an irregular occurrence in mature catchment).
junction pits	Frequency – monthly and occasionally after rain

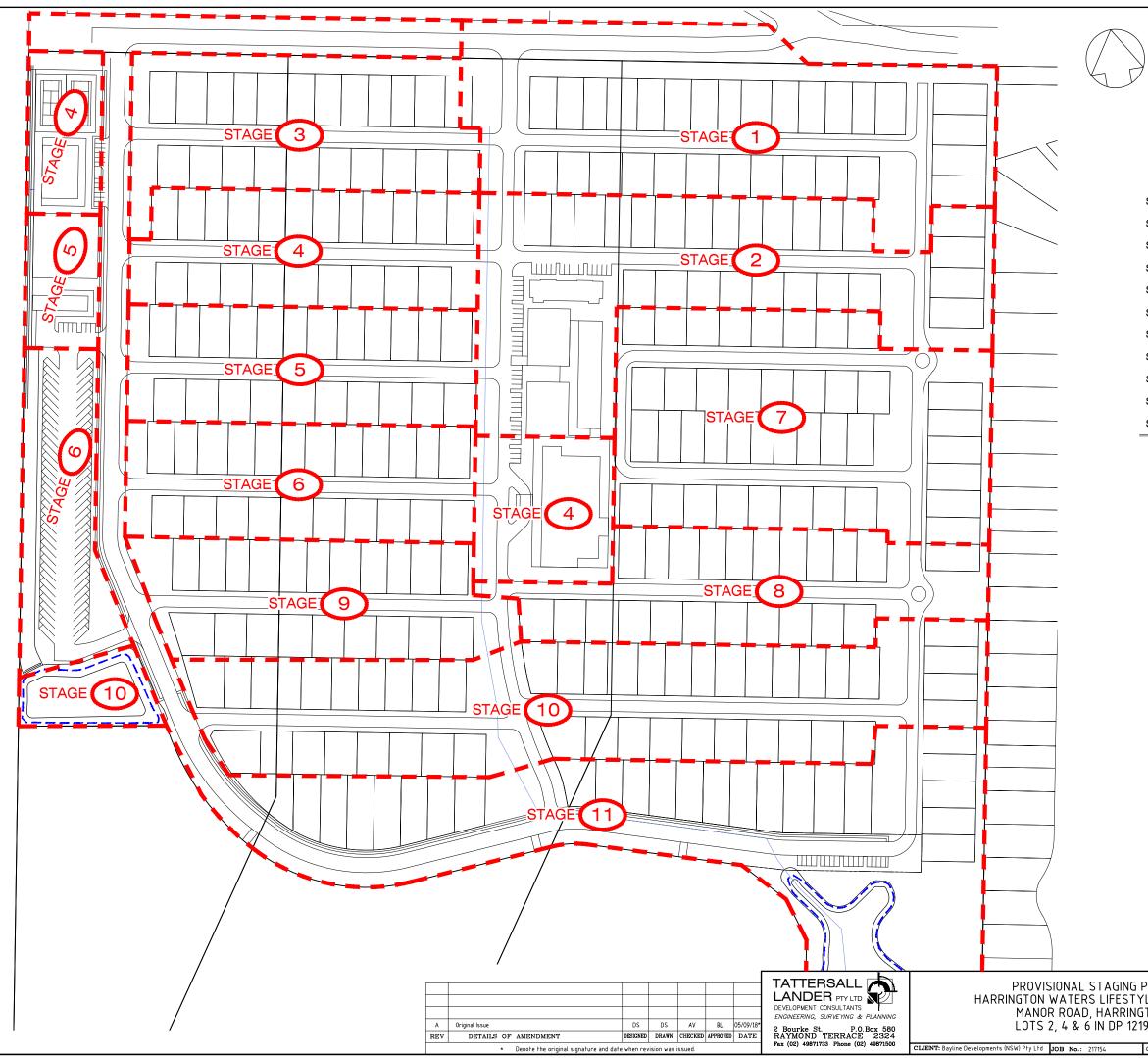
APPENDIX C: PROPOSED LAYOUT & DETAIL PLANS

HARRINGTON WATERS LIFESTYLE VILLAGE MANOR ROAD, HARRINGTON DA DESIGN PLANS **ROAD, DRAINAGE & ASSOCIATED WORKS**

		Schedule of Drawings	
Sheet	File Number	Description	Revision
1	21800138	TITLE PAGE, DRAWING INDEX & LOCALITY SKETCH	А
2	21800139	OVERALL LAYOUT PLAN	А
3	21800140	INDICATIVE STAGING PLAN	А
4	21800141	OVERALL DETAIL PLAN	А
5	21800142	DETAIL SHEET 1	А
6	21800143	DETAIL SHEET 2	А
7	21800144	DETAIL SHEET 3	А
8	21800145	DETAIL SHEET 4	А
9	21800146	GENERAL DETAILS & ROAD TYPICAL SECTIONS	А
10	21800147	ROAD LONGITUDINAL SECTIONS	А
11	21800148	ROAD LONGITUDINAL SECTIONS - SHEET 2	А
12	21800149	ROAD LONGITUDINAL SECTIONS - SHEET 3	А
13	21800150	ROAD LONGITUDINAL SECTIONS - SHEET 4	А
14	21800151	BASIN 1 DETAIL PLAN	А
15	21800152	BASIN 2 DETAIL PLAN	А
16	21800153	BASIN SECTIONS	А
17	21800154	TYPICAL DRAINAGE LONGITUDINAL SECTION	А
18	21800155	SITE CUT-FILL PLAN	А
19	21800156	TYPICAL EROSION & SEDIMENT CONTROL PLAN	А
20	21800157	TYPICAL SOIL & WATER MANAGEMENT PLAN NOTES	А


Designed By

LOCALITY SKETCH



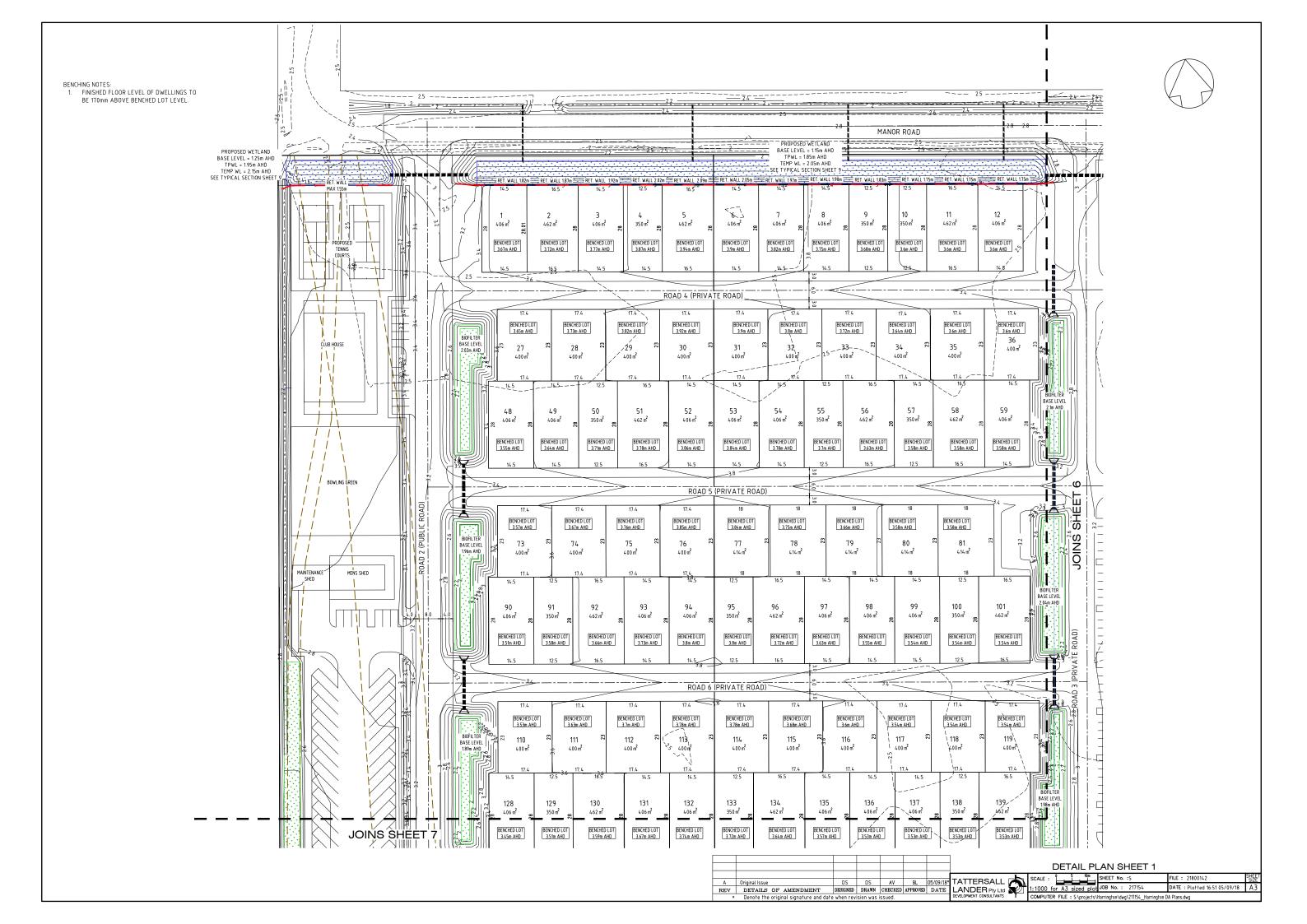
21800138 217154 SHEET No. :1 of 20

FILE : JOB No. :

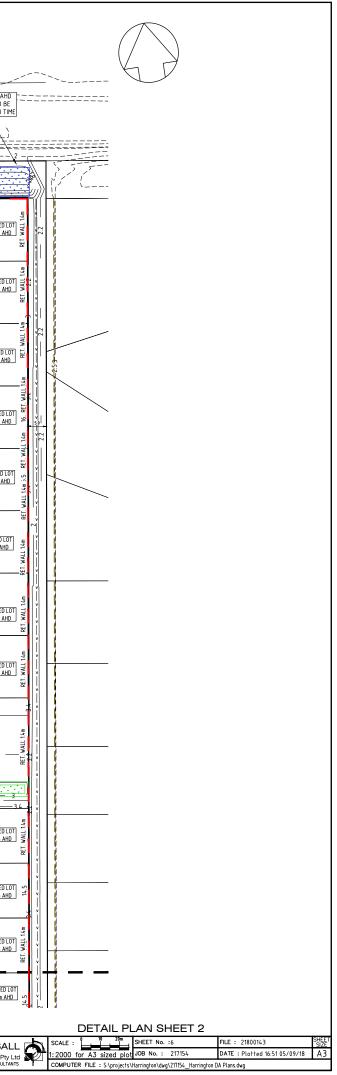
YOUT PLAN 5 LIFESTYLE VILLAGE HARRINGTON IN DP 1219123		COUNCIL MID COAST	REFERENCE 21800139	
		PARISH	SHEET SIZE	AЗ
		SCALE 1:4000 on A3	SHEE'	T No.
		DATE : Plo	Plotted 16:50 05/09/18	
17154	COMPUTER FILE : S:\projects\Harrington\dwg\217154 Harrington DA Plans.dwg			

STAGE 1 - 29 LOTS STAGE 2 - 25 LOTS STAGE 3 - 22 LOTS STAGE 4 - 21 LOTS STAGE 5 - 22 LOTS STAGE 6 - 22 LOTS STAGE 7 - 40 LOTS STAGE 8 - 22 LOTS STAGE 9 - 20 LOTS STAGE 10 - 45 LOTS STAGE 11 - 24 LOTS

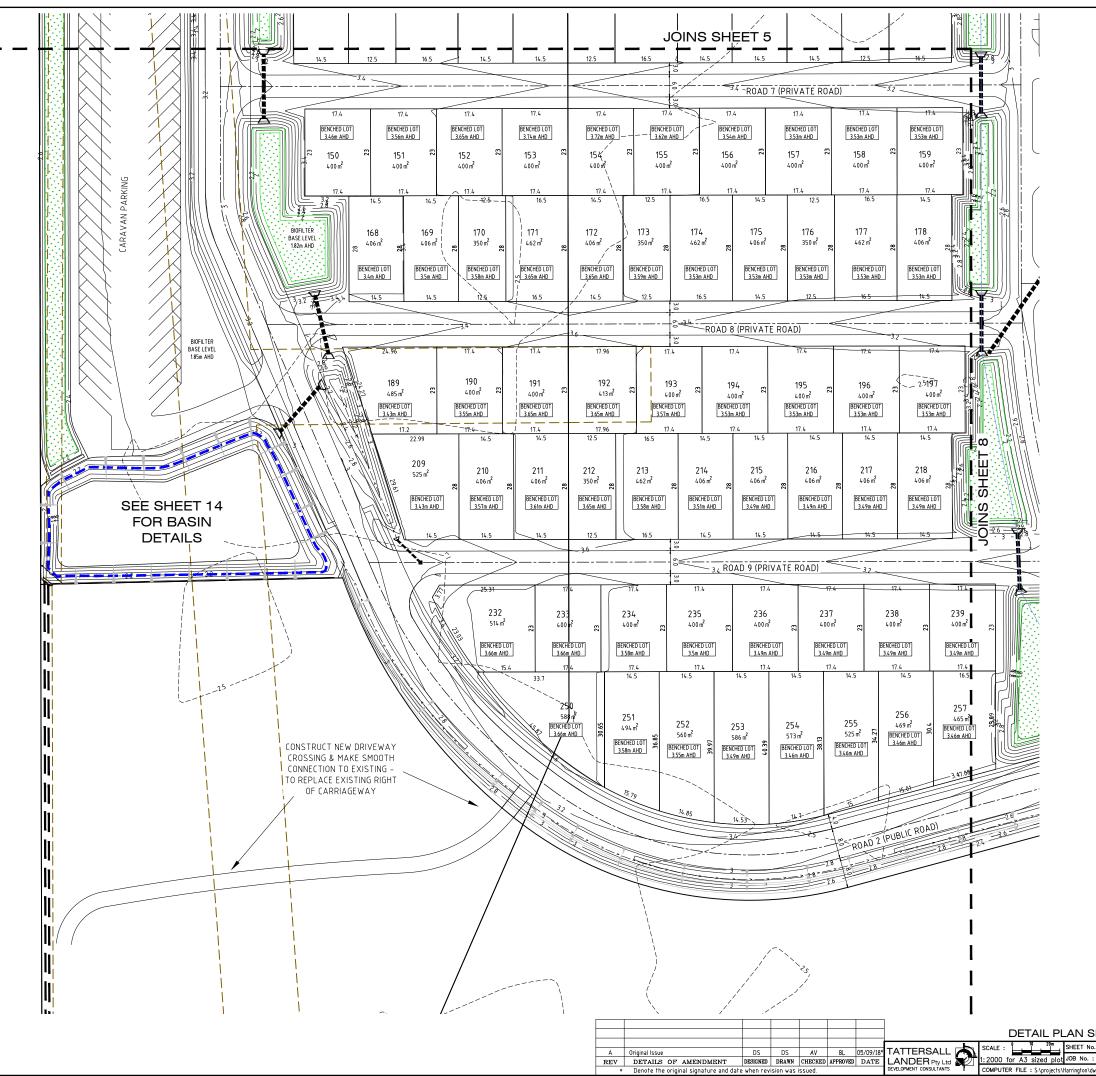
TAGING PLAN LIFESTYLE VILLAGE HARRINGTON N DP 1219123		COUNCIL MID COAST		REFERENCE 21800140	
		PARISH	SHEET SIZE	A3	
		SCALE 1:2000 on A3	SHEE 3	T No.	
		DATE :	Plotted 16:50 05/09/18		
154	COMPUTER FILE : S:\projects\Harrington\dwg\217154_Harrington DA Plans.dwg				



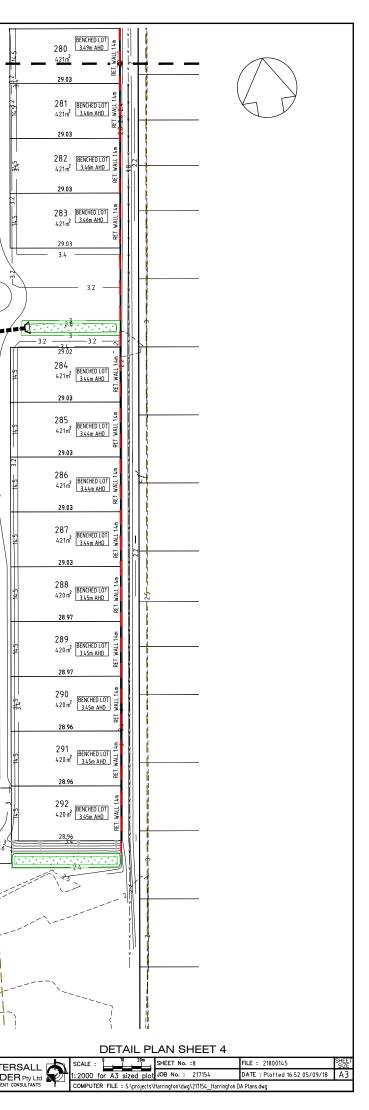
LEGEND

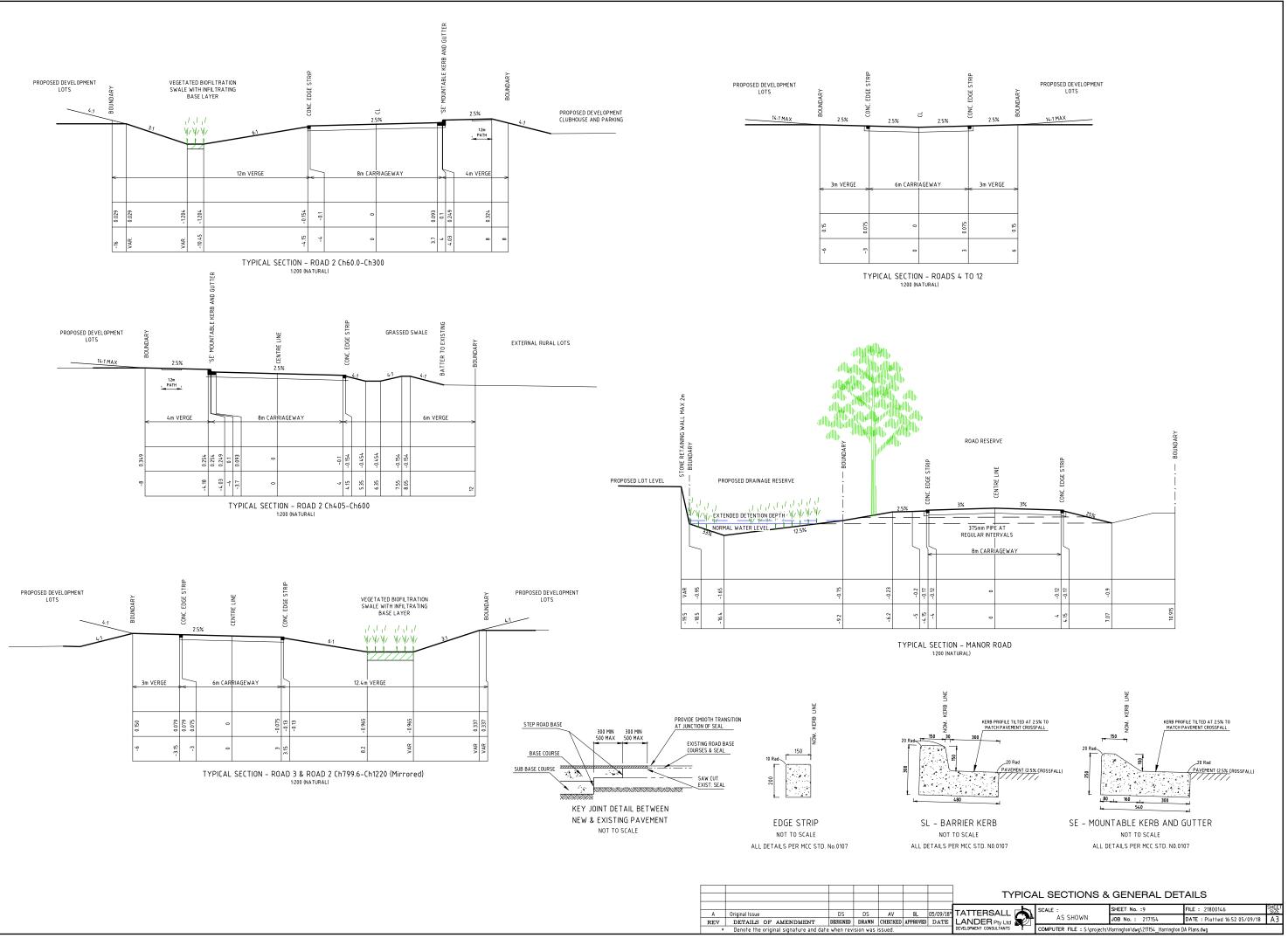

>>

PROPOSED PIPE PROPOSED DRAIN PROPOSED BIOFILTER PROPOSED WETLAND


		OVERALL	DETAIL PLAN		
SALL	Ţ	SCALE : 0 10 20m	SHEET No. :4	FILE : 21800141	SHEET
Pty Ltd		1:2000 for A3 sized plot	JOB No. : 217154	DATE : Plotted 16:51 05/09/18	Α3
SULTANTS COMPUTER FILE : S:\projects\Harrington\dwg\217154_Harrington DA Plans.dwg		A Plans.dwg			

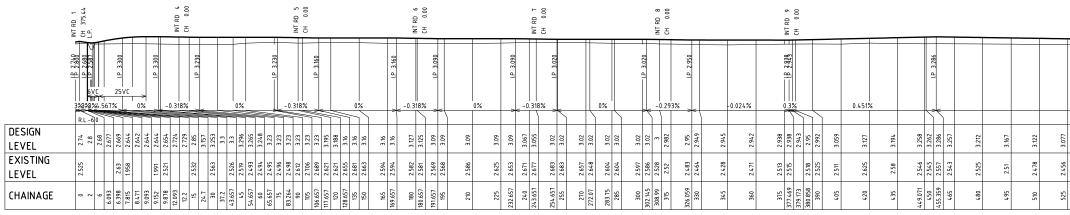
BENCHING NOTES: 1. FINISHED FLOOR LEVEL OF DWELLINGS TO BE 170mm ABOVE BENCHED LOT LEVEL.	
	H0 -25 -25 -25 H0 -10 -10 -10 -10 -10 H0 -10 -10 -10 -10 -10
BOFLTER BASE LEVEL 2.24 A AND Reverse 2.24 A AND Reverse Rever	



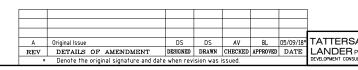

\square	$\backslash /$
(/	\setminus
K	\overrightarrow{D}
V	

		C	DETAIL	Ρl	AN SHEET 3		
ALL	Ţ	SCALE :	10 20	m	SHEET No. :7	FILE : 21800144	SHEET SIZE
Pty Ltd	洲	1:2000 for	r A3 sized	plot	JOB No. : 217154	DATE : Plotted 16:51 05/09/18	A3
ULTANTS		COMPUTER	FILE : S:\proj	ects\	Harrington\dwg\217154_Harrington D	A Plans.dwg	

BENC	HING NOTES:
1.	FINISHED FLOOR LEVEL OF DWELLINGS TO
	BE 170mm ABOVE BENCHED LOT LEVEL.


No. 4-5 1/25	
NN Tr. In. In. <thin.< th=""> <thin.< th=""> <thin.< th=""></thin.<></thin.<></thin.<>	

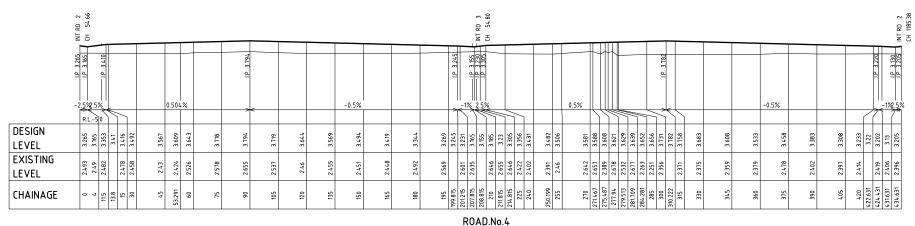
												6	CH 00:00														INT RD	0.0 H	
			I.P 3.031		LP 2.700						I.P 2.700			I.P 2.800													01	200	LP 2.475
	4.4270/2189 R.L510	<u>\$-2.1</u> 2	2%	-1.103	3%	<		0	%			< 0.3	33%	~							0%							-1.49	4%
DESIGN LEVEL	3.068	3.164		2.822	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.685	2.69	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74		2.74	2.74	2.74	2.74	2.74	2.74 2.573	2.415
EXISTING LEVEL	3.068 3.367 3.349	3.17	3.031	2.757	2.55	2.491	2.501	2.548	2.592	2.591	2.601	2.616	2.618	2.601	2.555	2.545	2.552	2.554	2.541	2.527	2.557	2.585	2.597	2.633	2.652	2.593	2.527	2.458	2.475
CHAINAGE	0 6.754 15	23.035	30	45	60	75	06	105	120	135	150	163.624	165	180	195	210	225	240	255	270	285	300	315	330	345	360	375 375	378.791	£ 400.543


ROAD.No.1 H=1:2000 V=1:400

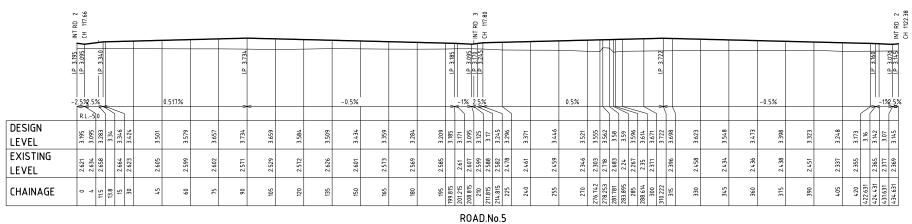
ROAD.No.2

																			INT RD 10	213.				La .	IN KU 11 CH 222.81					INT RD 12 CH 0.00					INT RD 13 CH 376.53				G	CH 434.63					- INT RD 4 CH 434.63			
				$\left(\right)$		I.P 2.800						1P 2800		I.P 2.875				200 C	0.0.2	I.P 2.935				I.P 2.935	I.P 2.995				I.P 2.995	I.P 3.055				I.P 3.055		1.P 3.115			I.P 3.115	I.P 3.175				I.P 3.175		I.P. 3.235		I.P. 3.235
	R.L50				177					0%			< 0.434	*~		0%	;		0.375	15		0%		×0.31	75%		0%).375% >	<	0	%		0.375%	\mathbb{A}	0%			15%	<u></u>	0%		N	37503755	$\sum_{i=1}^{n}$	0%	->
DESIGN LEVEL	2.8 2.8 2.8	2.8	2.8 2.8			2.8				2.8	877	2.8	2.845	2.875		2/8/2	2.875	2.875	2.905	1 ~i	2:935	2.935	2:935	2.935	2.969	2.995	2.995	2:995	2:995	3.018 3.025 3.055	m	3.055	3.055	3.055	3.06/ 3.085 3.115	3.115	3.115	3.115	3.115 3.14.5	3.155 3.175	3.175	3.175	3.175		3.204 3.205 3.205		3,235	3.235
EXISTING LEVEL	2.372 2.359 2.305	2.339	2.299			2.113 2.227		2.123 2.117		2.099		2.117 2.128	2.133		5	421.2	2.166	2.177	2.179 2.185 2.100	2.192	2.202	2.171	2.278	2.232 2.142	2.129 2.174	2.253	2.215	2.196	2.188	2.183 2.182 2.186	186	2.188	2.192		2.29 2.29 2.29		2.228	2.29	2.321 2.369	2.368 2.367	2.367	2.391	2.404	2.349 2.366	2.396 2.394 2.396	2.407	2.365	2.357
CHAINAGE	630 637.086 645	660	675 678.071	680.732 682.596 686.19	688.535	691.845 693.089	201 712.5 720	735 736.13	743.123 750	765	 190	795	810	816.878 825	S	840	855	870	8/2.836 880.836	88	006	915	066	95.836 94.3.836	94,5 951,836	960	975	066	968.836	1006.836 1014.836	1020	1035	1050		2001 1069.836 AFR 7701		1095	1110	1114.377 1122.378	1125 1130.378	114.0	1155	1165.431		11//.3/8 1185.378 1185.378		1215	1219.378

ROAD.No.2 H=1:2000 V=1:400

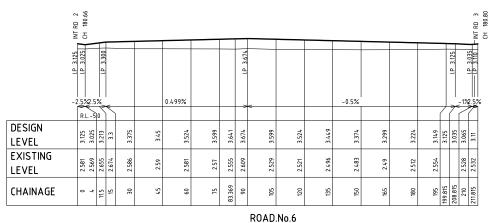

									CH 427.74	
	- 0	.3%						1.P 2.800	_ 0	%
								~	\sum	~
3.077	3.048	3.032	2.987	2.94.2	2.897	2.852	2.811	2.807	2.8	2.8
954.7	2.492	2.514	2.463	2.385	2.345	2.391	2.394	2.394	2.394	2.372
22	534.92	54.0	555	570	585	009	613.685	615	617.456	630

ROAD LONGITUDINAL SECTIONS

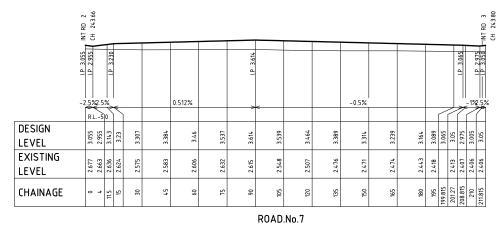

SALL	SCALE :	SHEET No. :10	FILE : 21800147	SHEET SIZE
	AS SHOWN	JOB No. : 217154	DATE : Plotted 16:52 05/09/18	A3
NSULTANTS	COMPUTER FILE : S:\projects\	Harrington\dwg\217154_Harrington D	A Plans.dwg	

	INT RD 1 CH 163.62 L.P.	INT RD 4	INT RD 5 CH 211.81	INT RD 6 CH 211.81	INT RD 7 CH 21181	INT RD 11 CH 0.00 INT RD 8 CH 199.88	INT RD 10 CH 0.00 INT RD 9 CH 185.11	INT RD 2 CH 617.46
	500 C 25VC 3787874-749%	0% 0.375% 0%	000 01 01 m m d - 0.375% 0%	071 K d d d d d d d d d d d d d d d d d d		0% +0.388%	0% -0.369% 0%	00872 d -2.5%
DESIGN LEVEL	2.685 2.685 2.625 2.621 2.601 2.592 2.592 2.592	2.587 2.587 2.577 2.58 2.58 2.564 2.664 2.664 2.666 2.666 2.367 3.177 3.207 3.207	3.26 3.26 3.23 3.211 3.2 3.2 3.2 3.2 3.2 3.16 3.16 3.16 3.14 3.14	3.14 3.14 3.14 3.11 3.11 3.11 3.08 3.08 3.08 3.08 3.08	3.08 3.08 3.064 3.05 3.02 3.02 3.02	3.02 3.02 3.02 3.02 3.02 3.02 3.02 3.02	2.96 2.96 2.96 2.905 2.905 2.905 2.9 2.9 2.9 2.9 2.9 2.9 2.9	2.9 2.8 2.8
EXISTING LEVEL	2.616 2.584 2.584	2.676 1.884 1.934 2.668 2.668 2.679 2.679 2.709	2,64,3 2,652 2,655 2,655 2,659 2,649 2,649 2,677 2,578 2,574 2,578 2,574 2,578 2,574 2,578 2,573 2,578 2,573 2,573 2,573 2,573 2,573 2,573 2,573 2,573 2,575 2,5777 2,5777 2,5777 2,5777 2,5777 2,5777 2,57777 2,57777 2,57777 2,57777777777	2.537 2.534 2.513 2.513 2.532 2.532 2.532 2.537 2.537 2.537	2.423 2.423 2.402 2.406 2.413 2.413 2.413 2.413	2.424 2.404 2.403 2.403 2.403 2.403 2.403 2.403 2.403 2.403 2.399 2.399 2.392 2.392 2.393	2.378 2.392 2.405 2.402 2.402 2.402 2.402 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.4	2.404 2.401 2.394
CHAINAGE	0 2 6 6.454 6.856 7.257	7.513 8.114 8.777 9.449 9.454 10.771 12.454 12.454 12.5 15 15 15 30 30 31.5	45 46.798 54.798 60 62.798 75 90 105 105 109.798 117.798 120 120	150 165 172.798 180.798 180.798 188.798 195 195 210	225 235.798 240 243.798 251.798 255 255 255	285 295.622 296.6339 296.339 296.339 296.339 296.339 296.339 296.802 306.802 314.171 315 330	345 360.191 360.425 3716.07 376.707 376.707 399.023 405 411.026	420 423.743 427.743

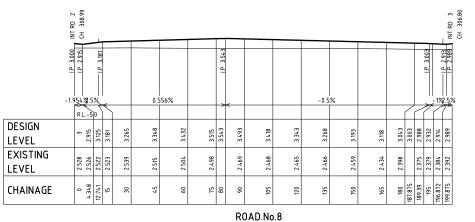
ROAD.No.3 H=1:2000 V=1:400

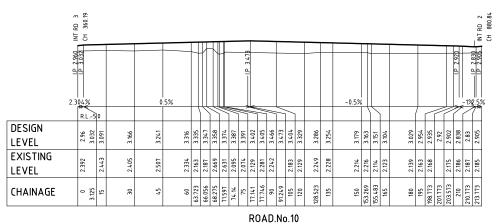


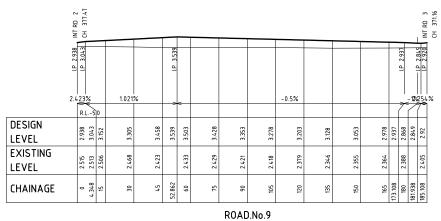
H=1:2000 V=1:400

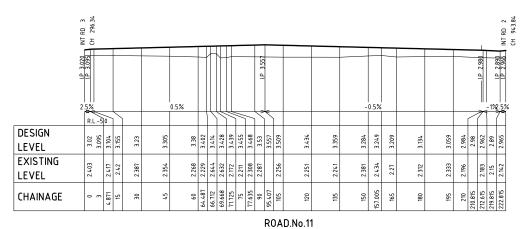


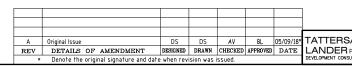
H=1:2000 V=1:400


								ROAD LONGITUDINAL SECTIONS											
ŀ	^	Original Issue	DS	DS	41/	BL	05/00/19*	TATTERSALL	oonee .	SHEET No. :11	FILE : 21800148	SHEET							
ŀ	REV	,			CHECKED				AS SHOWN	JOB No. : 217154	DATE : Plotted 16:52 05/09/18	Α3							
	*	Denote the original signature and dat						DEVELOPMENT CONSULTANTS	COMPUTER FILE : S:\projects\	Harrington\dwg\217154_Harrington [)A Plans.dwg								

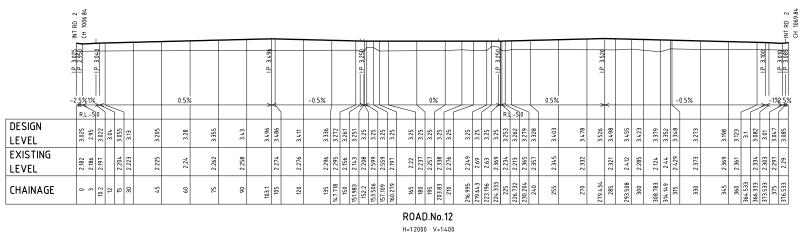

H=1:2000 V=1:400


H=1:2000 V=1:400

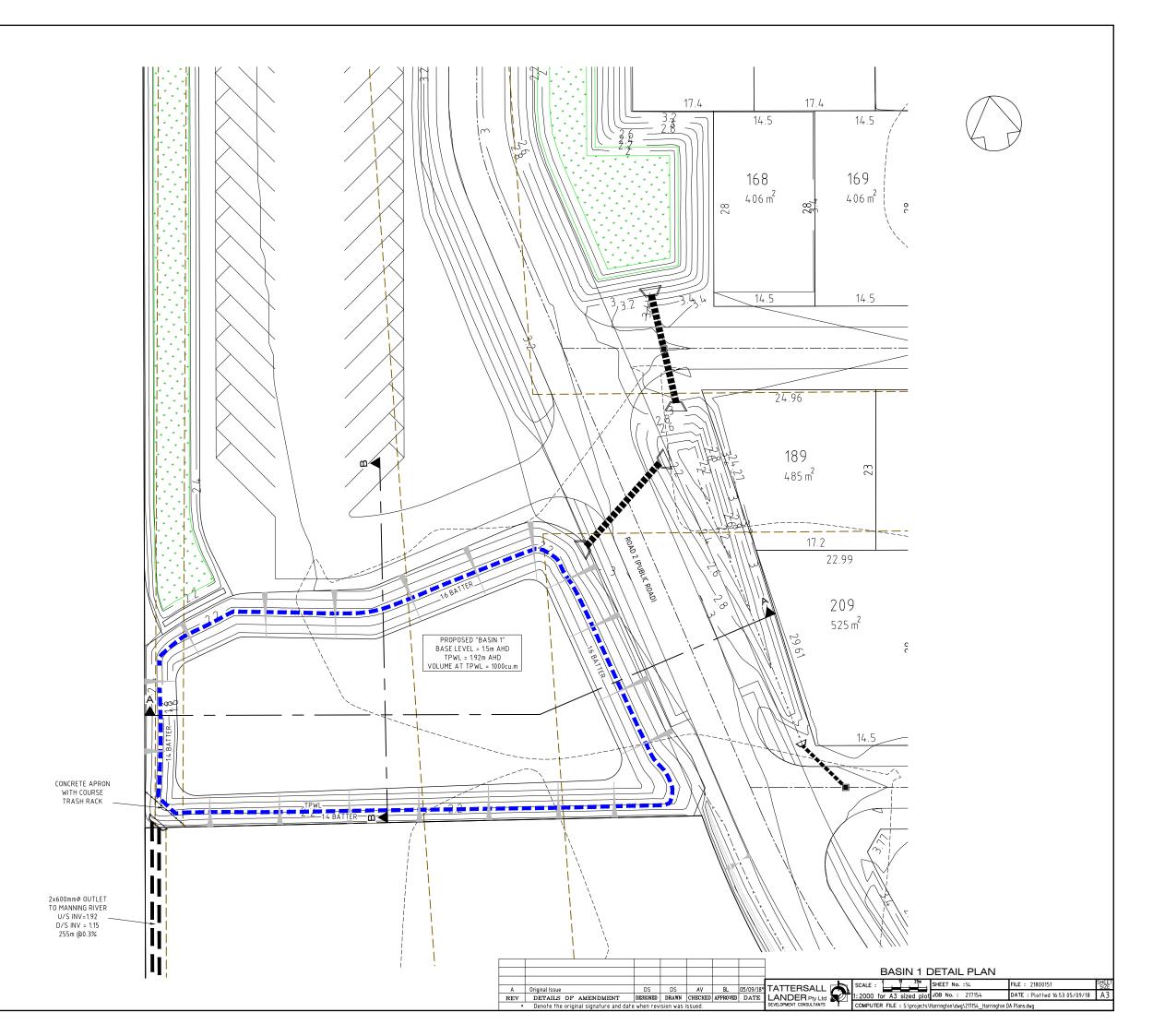

H=1:2000 V=1:400

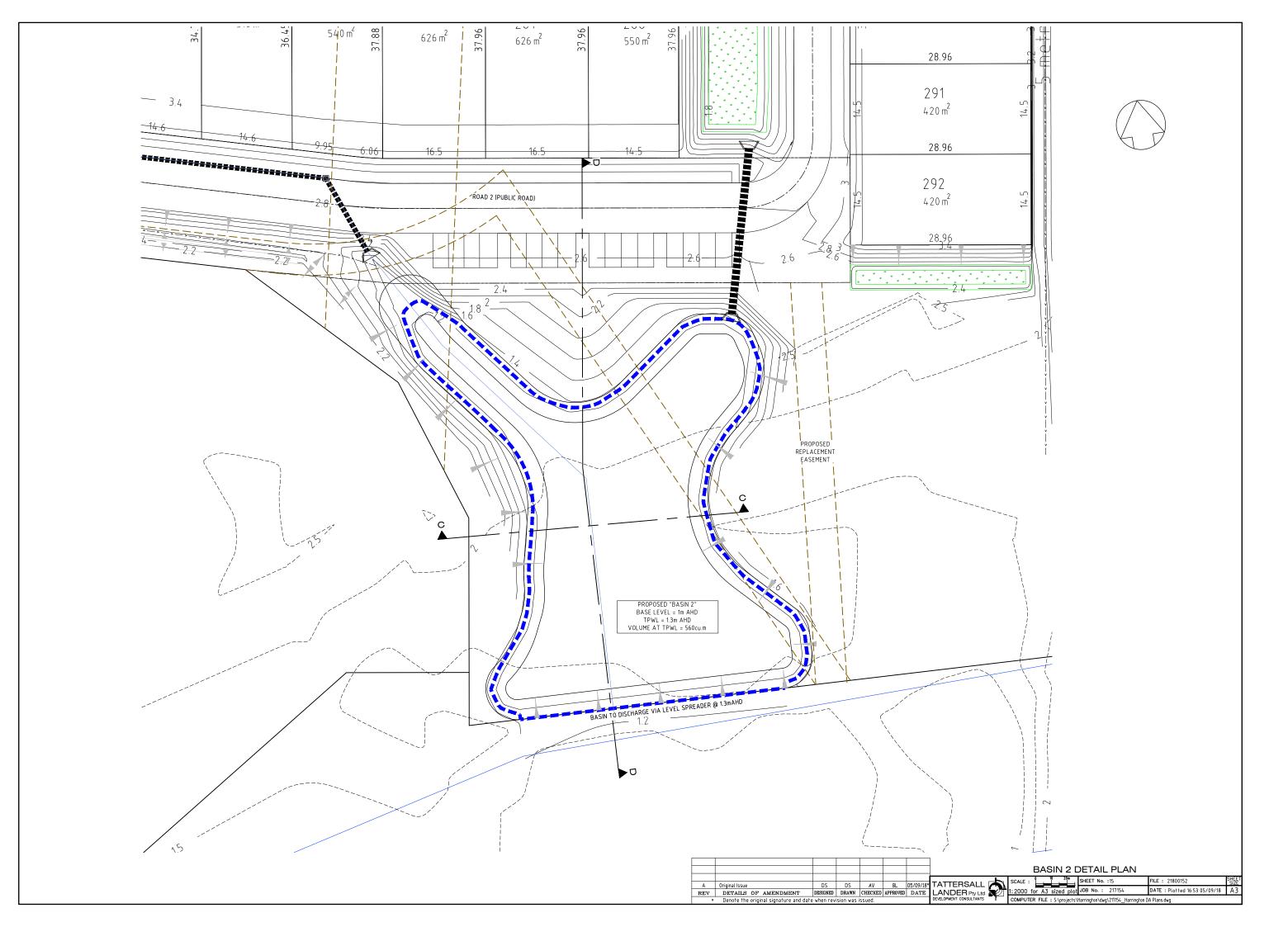

H=1:2000 V=1:400

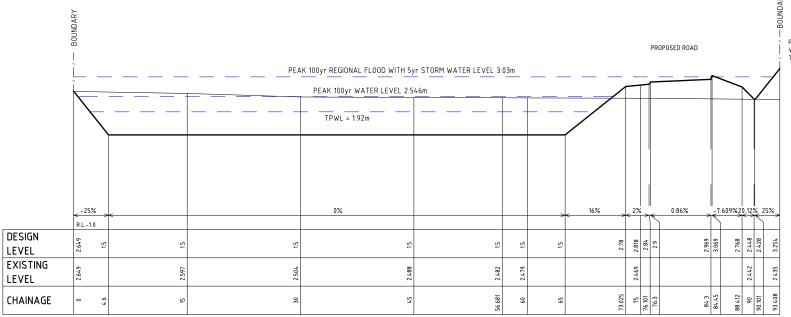
H=1:2000 V=1:400

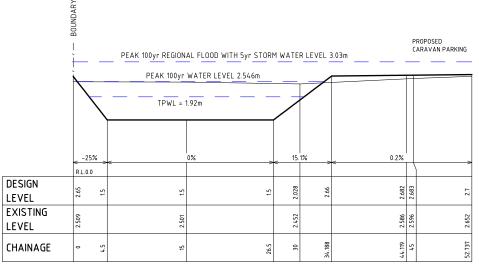


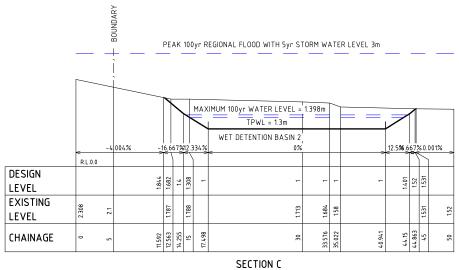
H=1:2000 V=1:400

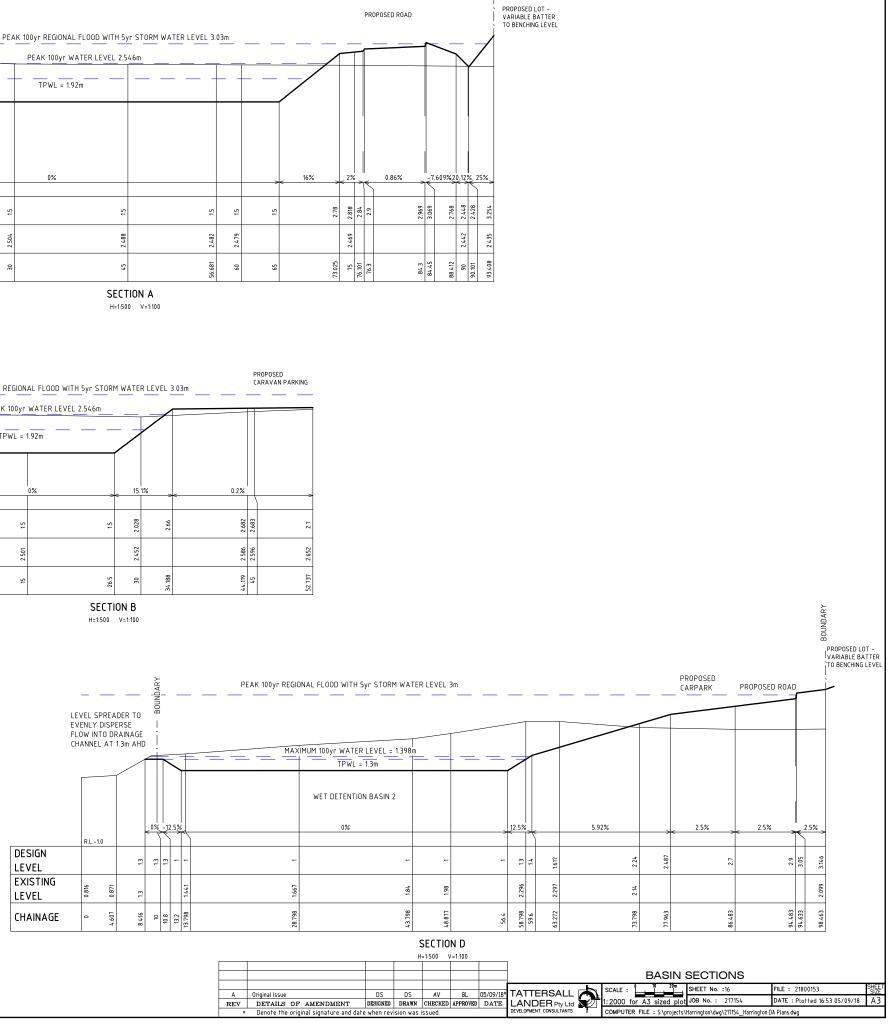


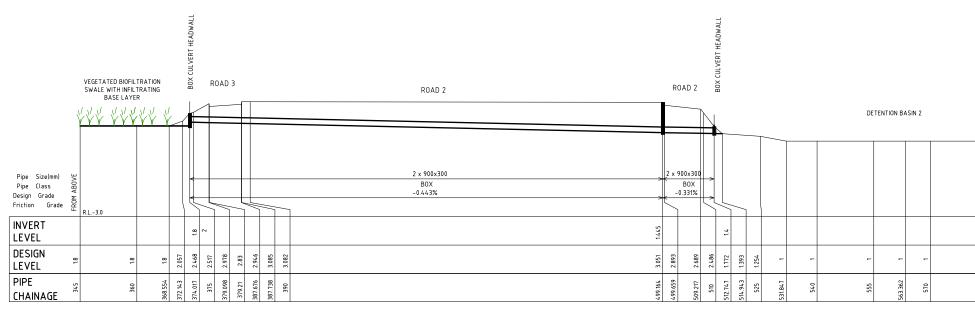

ROAD LONGITUDINAL SI	ECTIONS
----------------------	---------


SALL	SCALE :	SHEET No. :12	FILE : 21800149	SHEET SIZE
	AS SHOWN	JOB No. : 217154	DATE : Plotted 16:52 05/09/18	A3
NSULTANTS	COMPUTER FILE : S:\projects\	Harrington\dwg\217154_Harrington D	A Plans.dwg	


[ROAD LONGITUDINAL SECTIONS												
ł	^	Original Issue	DS	DS	41/	BL	05/00/19*	TATTERSALL	oonee .	SHEET No. :13	FILE : 21800150	SHEET								
ł	REV	DETAILS OF AMENDMENT			CHECKED				AS SHOWN	JOB No. : 217154	DATE : Plotted 16:53 05/09/18	A3								
	*	Denote the original signature and dat							COMPUTER FILE : S:\projects\	Harrington\dwg\217154_Harrington [)A Plans.dwg									

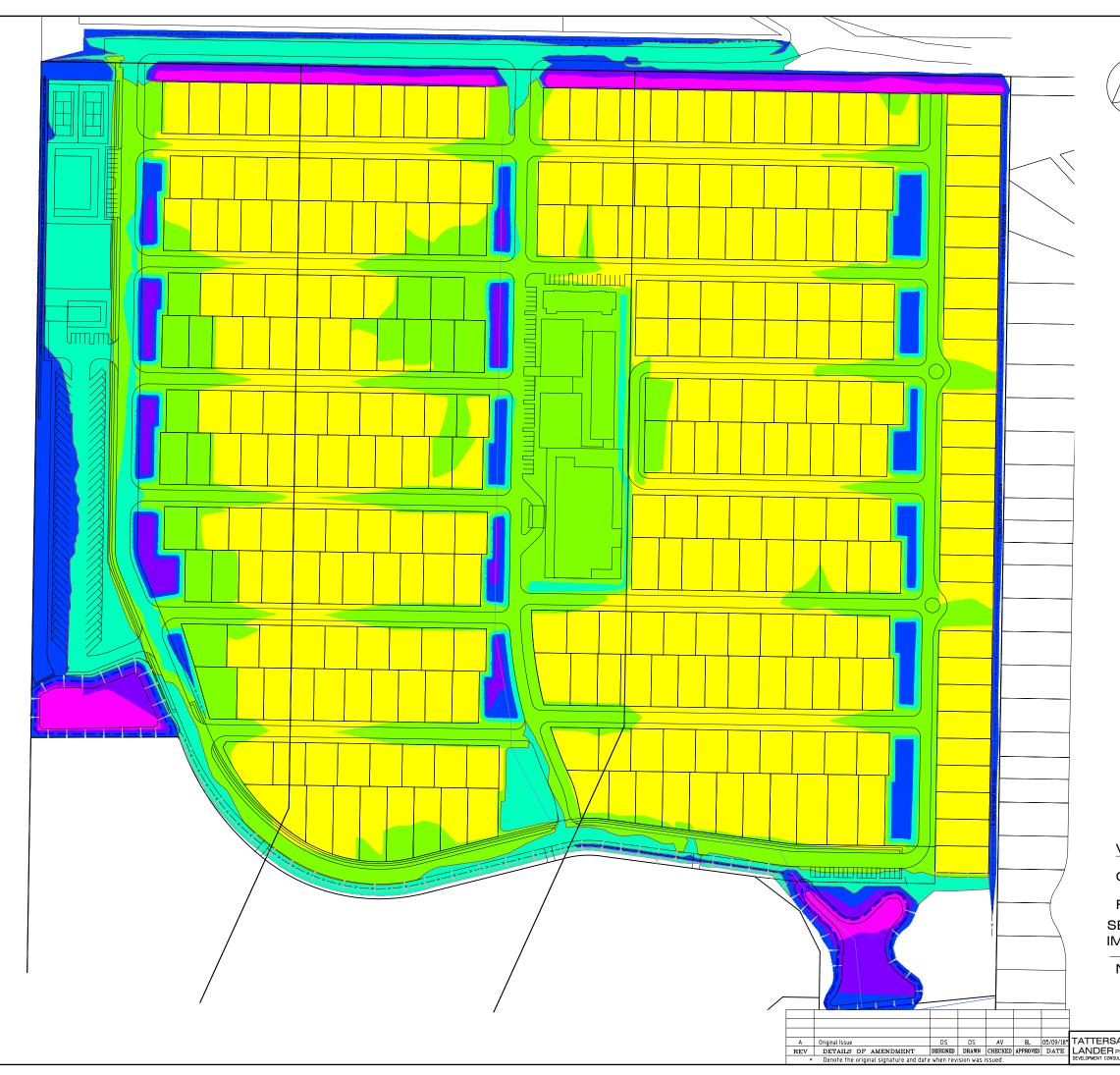






	BOX CULVERT HEADWALL	 BOX CULVERT HEADWALL 		TATED BIOFILTR/ LE WITH INFILTR/ BASE LAYER		- BOX CULVERT HEADWALL	OAD 5	BOX CULVERT HEADWALL			SWALE WITH	BIOFILTRATION I INFILTRATING LAYER		 BOX CULVERT HEADWALL 	ROAD	6	BOX CULVERT HEADWALL		VEGETATED BIOFIL SWALE WITH INFIL BASE LAYI	LTRATING		- BOX CULVERT HEADWALL	Я	:0AD 7	BOX CULVERT HEADWALL		VEGE SWAI	TATED BIOFIL LE WITH INFIL BASE LAYI	TRATING		BOX CULVERT HEADWALL	ROAD	G 8 7 ROX CHI VERT HE ADWALL	
			<u> </u>	*** **	₩¥∕					/ // /	*****	***	γγ'	¥ f			N/	¥¥		<u> </u>	Ϋ́Ύ	\checkmark	\square				\/ \/ \/ \/ \/ \/ \/ \/		<u> </u>	//////	4			<u></u>
Pipe Size(mm) Pipe Class	< 600x300 B0X	*		SWALE	>		00x300 BOX	~			SWALE			~	900x30 BOX		<		SWALE				-	900×300)			SWALE			~	2 x 900 B0X	1216	£
Design Grade Friction Grade	-0.4%	ł		0%			-0.4%	K	5	-+	0%		+	$\left\{ \star \right\}$	-0.4%		ł		0%			->		.4%	k	Ł	 ר	0%				-0.49		
INVERT LEVEL	2.36	2.3			21	2.3			2.24					2.04	2.24		2.18	1.98				1.98	2.18		2.12	761					1.92		3	2.06
SURFACE	3.234	3.005	2.1	2.1	2.175 2.938	3.315	3.283	3.271	2.894		2.04		2.04	2.04	3.229 3.148	3.235	2.829	1.98	1.98	1.98	1 QR	2.797	3.2	3.088 3.198	2.774	1.921	1.92		1.92	1.92	2.724	3.14 3.103	3.163	2.838
PIPE CHAINAGE	0 13.68	8	19.04.2 30	45	60	40 <i>L</i> .49	75		78.001 81.005		105		120	123.002	128.79 135	97.6E1	141	144.004 150	165	180	186 001	189.015	190.504	195 202.51	204	207	210		240	249.076	252	253.506 255	265.647	267 270

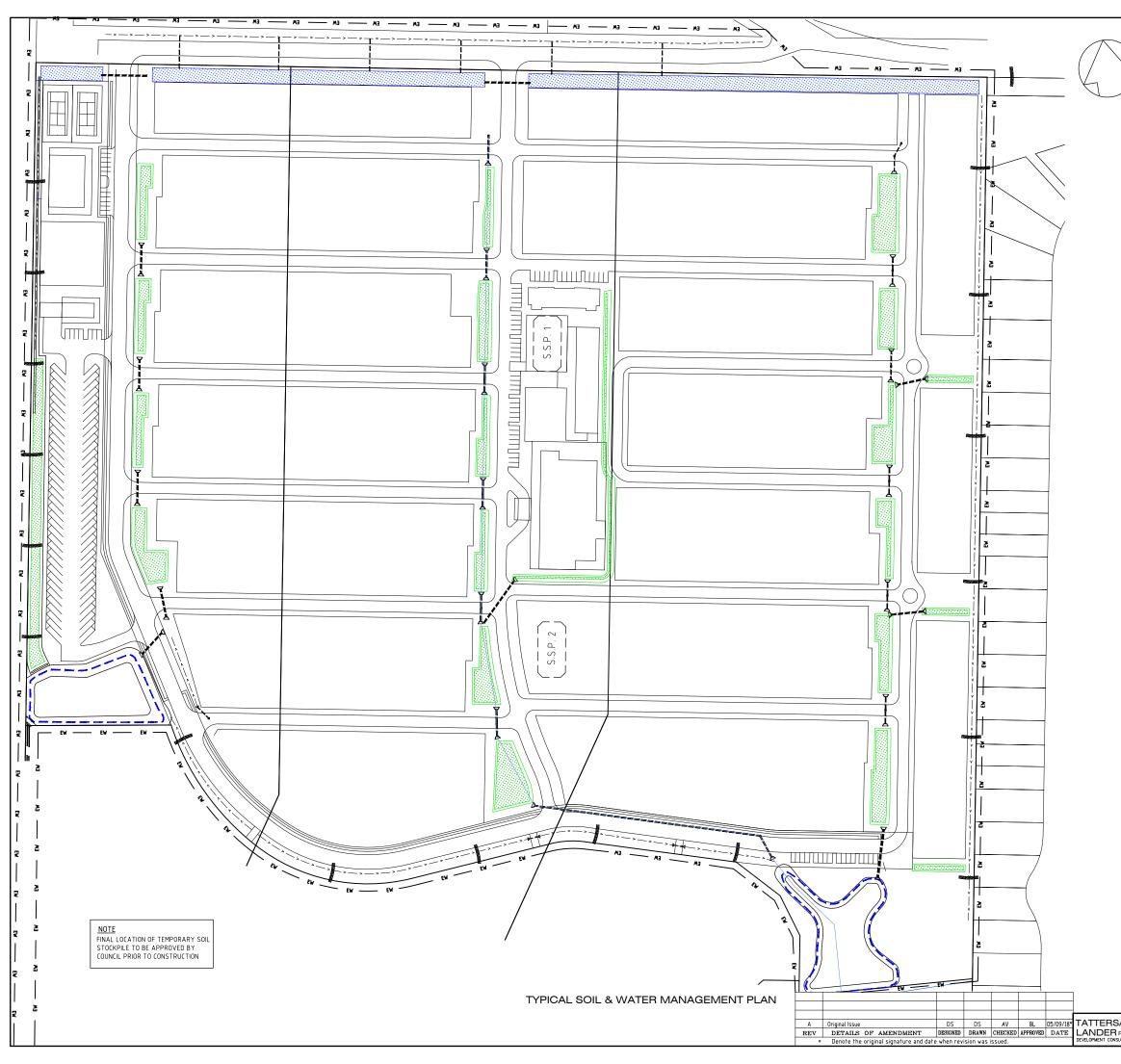
ROAD 3 DRAINAGE LINE



ROAD 3 DRAINAGE LINE

								TYPICAL DRAINAGE SECTION								
		Original Issue	DS	DS	41/	DI	05/00/19*	TATTERSALL	SCALE :	SHEET No. :17	FILE : 21800154	SHEET				
RE	v	DETAILS OF AMENDMENT	DESIGNED		CHECKED				AS SHOWN	JOB No. : 217154	DATE : Plotted 16:53 05/09/18	Α3				

۴	1.105	Ð	1.2
585	598.116	600	602.832


-1.5m to -1m
-1m to -0.5m
-0.5m to 0m
0m to 0.5m
0.5m to 1m
1m to 1.5m

VOLUME SUMMARY

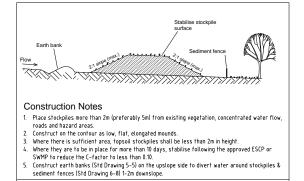
CUT =	11,750 m³
FILL =	197,200 m³
SELECT MPORT =	20,000 m³
NET =	165,450 m ³

IET =	165,450 m ³ SHORTFALL

CUT FILL PLAN											
SALL	SCALE : 10 20m SHEET No. :18	FILE : 21800155	HEET SIZE								
	1:2000 for A3 sized plot JOB No. : 217154	DATE : Plotted 16:54 05/09/18	A3								
NSULTANTS	COMPUTER FILE : S:\projects\Harrington\dwg\217154_Harrington DA Plans.dwg										

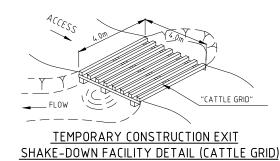
<u>_</u> S	TANDARD S	SYMBOLS	
EROSION AND	SEDIMENT	CONTROL	PLANS

Construction Barrier Fencing	
Sediment Fence	
Straw Bale Sediment Filter	
Soil Stock Pile	
Extent Of Works	


—	BF	—
	-0	-0
S.s	S.P. 1)

----- EW

SALL	SCALE : 10 20m SHEET No. :19	FILE : 21800156	SHEET SIZE
	1:2000 for A3 sized plot JOB No. : 217154	DATE : Plotted 16:54 05/09/18	Α3
NSULTANTS	COMPUTER FILE : S:\projects\Harrington\dwg\217154_Harrington D	A Plans.dwg	-


SOIL & WATER MANAGEMENT NOTES

- 1. This plan is to be read in conjunction with other engineering plans and any written instructions that may be issued.
- 2. The contractor shall implement all soil erosion and sediment control measures prior to disturbance of the related catchment area and to the satisfaction of the Superintenden
- 3. All positions shown are indicative only and are best determined on site in conjunction with the superintendent. Variations will be permitted to best suit the circumstances.
- 4. Cleared vegetation must be disposed of by :-
- i) chipping or mulching for future landscaping and usage, or
- ii) transport to an approved landfill facility.
- 5. Temporary crossbanks (bunds constructed with earth, straw bales or sandbags), shall be constructed during roadworks to limit slope length, where possible, to 80 metres. These shall be constructed immediately prior to forecast rain and during temporary closure of the site, including weekends.
- 6. Temporary rehabilitation should be undertaken on disturbed areas where works have stopped and soils are expected to remain exposed for two months
- 7. Sediment barriers (e.g. sandbags or straw bales) should be located upstream of stormwater inlet pits prior to the road surface being paved and lands upslope being rehabilitated.
- 8. At the conclusion of each day sand bags are to be placed at the end of completed sections of road pavement to prevent scouring.
- 9. The contractor will inspect all erosion and pollution control works at least weekly and following every rainfall event greater than 5mm, providing particular attention to the following matters :
- (a) Ensure drains operate effectively and initiate repair as required. (b) Remove spilled sand (or other materials) from hazard areas, including lands closer than 5 metres from likely areas of concentrated or high velocity flows such as waterways and payed areas.
- (c) Ensure rehabilitated lands have effectively reduced the erosion hazard and initiate upgrading or repair as appropriate. (d) Construct additional erosion and/or sediment control works as might become necessary to ensure the desired protection is given to
- downslope lands and waterways, i.e. make ongoing changes to the plan. (e) Maintain erosion and sediment control measures in a functioning condition until all earthwork activities are completed and the site is rehabilitated.
- (f) Remove temporary soil conservation structures as a last activity in the rehabilitation program.
- 10. Utilise a single access only to the stock pile sites.
- 11. Drop inlets which do not outlet to silt traps shall be blocked until all works are completed.
- 12. Limit disturbed areas on site as much as possible at any one time, and stabilise competed areas as soon as practicable. Lands where works are not to continue for more than 20 working days must be rehabilitated. Such rehabilitation shall involve the spraying of a straw-bitumen mulch to the disturbed lands or equivalent
- 13. Access areas limited to a maximum width of 10 (preferably 5) metres
- 14. Conformity with this plan shall in no way reduce the responsibility of the Contractor to protect against water damage during the course of the contract
- 15. Topsoil and spoil shall be stockpiled in non-hazard areas and protected from surface run-off by diversion drains or similar. Stockpiles shall be surrounded on downstream sides by silt fencing. Stockpiles shall be suitably compacted to inhibit erosion. Where the stockpiling period exceeds four (4) weeks, the stockpile shall be seeded to encourage vegetation growth.
- 16. Topsoil shall be respread and stabilised as soon as possible. Disturbed areas shall be left with a scarified surface to encourage water filtration and assist keying in topsoi
- 17. The contractor shall provide a turf strip behind all kerb and gutter at completion of footpath formation
- 18. The contractor shall maintain grass cover until all works have been completed including the maintenance period, by frequent watering and mowing where required.
- 19. All drainage works shall be constructed and stabilised as guickly as possible to minimise risk of erosion.
- 20. Vehicular traffic shall be controlled during construction confining access where possible to proposed or existing road alignments plus 3 metres. Areas to be left undisturbed shall be marked off.
- 21. Site access shall be restricted to a nominated point. The construction of a shake-down area will be required at the entry to the site.
- 22. Facilities and/or equipment must be provided for the application of water to disturbed areas to minimise the generation of airborne dust from any area disturbed by construction activities.
- 23. Material removed from sediment control structures must be disposed of in a way that does not pollute waters or bushland.
- 24. Waste disposal containers must be provided on site for the collection and disposal of all industrial and domestic type wastes generated on site
- 25. Concrete wastes or washings from any concrete mixture or deliveries must not be deposited in any location where they can flow or be washed into waters
- 26. Runoff from vehicle, construction plant or mobile plant maintenance and cleaning areas must be contained, collected and disposed of in a manner to prevent entry into any waters, including sediment retention ponds
- 27. Fuelling of vehicles and construction plant must be carried out with an operator or driver present, and in a way that prevents any spillage occurring.
- 28. Prior to the controlled discharge (e.g. de-watering activities from excavations and sediment basins) of any water (groundwater or sediment laden water) from the site during construction, the following water quality objectives shall be achieved: * not exceed Total Suspended Solids of 50mg/L
 - * not exceed Turbidity of 50 NTU
 - * range within pH value of 6 to 8
 - * be < 80% and > 20% saturation dissolved oxygen
 - have no odour or visible petro-chemical sheen
 - * have no visible litter or waste matter
 - * not contain any other contaminant, chemical or biological condition which causes any measurable adverse effect

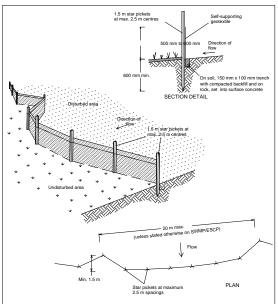
SD 4-1


STOCKPILES

NOT TO SCALE

	Original Issue	DS	DS	AV	01	05/00/10*	TATTERSALL	SCALE :	SHEET No. :20	FILE : 21800157	Sł
REV									JOB No. : 217154	DATE : Plotted 16:54 05/09/18	1
*	Denote the original signature and date							COMPUTER FILE S:\projects	Harrington\dwg\217154_Harrington [)A Plans.dwg	

TYPICAL SOIL & WATER MANAGEMENT PLAN NOTES



Construction Notes

- CONSTRUCTION INOTES
 1. Construct the straw bale filter as close as possible to being parallel to the contours of the site.
 2. Place bales lengthwise in a row with ends tightly abuting. Use straw to fill any gaps between bales. Straws are to be placed parallel to ground.
 3. Ensure that the maximum height of the filter is one bale.
 4. Embed each bale in the ground 75 mm to 100 mm and anchor with two 12 metre star pickets or stakes. Angle the first star picket or stake in each bale towards the previously laid bale. Drive them 600 mm into the ground and, if possible, flush with the top of the bales. Where star pickets are used and they portuge above the bales, ensure they are fitted with safely caps.
 5. Where a straw bale filter is constructed downslope from a disturbed batter, ensure the bales are placed to 22 metres downclone from the top.
- are placed 1 to 2 metres downslope from the toe Establish a maintenance program that ensures the integrity of the bales is retained - they could require replacement each two to four months.

SD 6-7

STRAW BALE FILTER

Construction Notes

- CONSTRUCTION PORCES as close as possible to being parallel to the contours of the site, but with small returns as shown in the drawing to limit the catchment area of any one section. The catchment area should be small enough to limit flow if concentrated at one point to 50 U/s in the design storm, usually the Dior event.
 2. Gut a 50-mm deep trench along the upslope line of the fence for the bottom of the fabric to be catched.
- entrenched.
- Drive 1.5m long star pickets into ground at 2.5m intervals (max) at the downslope edge of the trencl
- Ensure any star pickets are filted with safety caps. Fixuse any star pickets are filted with safety caps. Fix self-supporting geotextile to the upslope side of the posts ensuring it goes to the base of the trench. Fix the geotextile with wire ites or as recommended by the manufacturer. Only use geotextile specifically produced for sediment fencing. The use of shade cloth for this purpose is not activities. georgenerative spectroary produced for sconnent rendry. The disc of shock control that pupped satisfactory. Join sections of fabric at a support post with a 150mm overlap. Backfill the trench over the base of the fabric and compact it thoroughly over the geotextile.

```
SEDIMENT FENCE
                                       SD 6-8
```


STORMWATER MANAGEMENT <u>REPORT</u> for HARRINGTON WATERS LIFESTYLE VILLAGE SENIORS LIVING DEVELOPMENT

MANOR ROAD, HARRINGTON

LOT 2, 4 & 6 IN DP 1219123

Prepared by TATTERSALL LANDER PTY LTD Development Consultants September 2018

CONTENTS

1.0	INTRODUCTION	. 5
2.0	BACKGROUND INFORMATION	. 5
3.0	SITE CONTEXT	. 6
4.0	PROPOSED DEVELOPMENT	
5.0	WATER QUALITY TARGETS	. 7
6.0	CONSTRAINTS AND OPPORTUNITIES / BEST PLANNING PRACTICES	. 8
7.0	SOIL AND WATER MANAGEMENT	
8.0	INTEGRATED WATER CYCLE MANAGEMENT	
9.0	STORMWATER MANAGEMENT - HYDROLOGY	
9.1	FLOW CONVEYANCE RESULTS	13
9.2	BIO-SWALE SCOUR VELOCITIES	18
9.3	PUBLIC SAFETY	18
9.4	REGIONAL FLOOD LEVELS	21
10.0	STORMWATER MANAGEMENT – WATER QUALITY MODEL	22
10.	1 BACKGROUND	22
10.2	2 MUSIC MODELLING	22
10.2	2.1 CLIMATE / RAINFALL	23
10.2	2.2 EVAPORATION	24
10.2	2.3 NODE PARAMETERS	25
10.2	2.4 EXISTING FLOW & POLLUTANT ANALYSIS	26
10.2	2.5 PROPOSED DEVELOPMENT FLOW & POLLUTANT ANALYSIS	27
10.2	2.6 COMPARISON OF POLLUTANT RESULTS	31
11.0	COSTS	32
12.0	OPERATION AND MAINTENANCE PLAN	33
12.	1 BIOFILTERS	33
12.2	2 RAINWATER HARVESTING TANKS	33
13.0	CONCLUSIONS	34
14.0	REFERENCES	35
API	PENDIX A: DRAINAGE CONCEPT PLAN	36

APPENDIX B: BIOFILTER MAINTENANCE TASKS	. 38
APPENDIX C: PROPOSED LAYOUT & DETAIL PLANS	. 40

LIST OF FIGURES

Figure 1: Locality Diagram	5
Figure 2: Basin 1 - 5 Year ARI Water Elevation	
Figure 3: Basin 2 - 5 Year ARI Water Elevation	
Figure 4: Basin 1 - 100 Year ARI Water Elevation	
Figure 5: Basin 2 - 100 Year ARI Water Elevation	
Figure 6: Hazard Categories (Smith et al, 2014)	
Figure 7: Adopted Rainfall-Runoff MUSIC Parameters	25
Figure 8: Existing State MUSIC Model	27
Figure 9: Proposed Development MUSIC Model	

LIST OF TABLES

7
14
15
15
20
21
24
26
31
rk 31
r

1.0 INTRODUCTION

This report has been prepared to support a development application for a 292 lot Seniors Living subdivision proposal.

The site of the proposed development is comprised of Lots 2, 4 & 6 in DP1219123 and is located on Manor Road at Harrington.

Figure 1: Locality Diagram

2.0 BACKGROUND INFORMATION

The site is currently vacant rural style land on the outskirts of the township of Harrington. The majority of the site is zoned R5 large lot residential, with some accompanying E2 lands surrounding the creek at the south of the site.

The site is adjacent to residentially zoned land developed as part of the Harrington Waters estate to the east, with RU1 lands to the west and north. The northern part of the RU1 lands includes an existing caravan park on the opposite side of Manor Road.

3.0 SITE CONTEXT

The three existing lots are currently vacant and have been substantially cleared in the past. Vegetation is generally a mix of pasture grasses, but it does not appear to currently be actively grazed.

The topography is best described as flat, with levels generally from 2.0m to 2.7m AHD. Soils are a generally a silty sand in nature.

Photo 1: Existing Site Conditions

4.0 PROPOSED DEVELOPMENT

The proposal is for a 292-lot community title subdivision and Seniors Living development, including various community facilities and associated infrastructure including filling, private and public road and drainage construction, and services installation.

It is proposed to address stormwater impacts with a combination of a rainwater harvesting/reuse system, street scale biofilters, constructed wetlands and swales.

5.0 WATER QUALITY TARGETS

In preliminary discussions, Council have indicated the development should meet the pollution reduction targets in Table 1 below:

Gross Pollutants (GP)	90%
Total Suspended Solids (TSS)	Neutral or Beneficial Effect
Total Phosphorus (TP)	Neutral or Beneficial Effect
Total Nitrogen (TN)	Neutral or Beneficial Effect

Table 1: Stormwater Quality Targets

6.0 <u>CONSTRAINTS AND OPPORTUNITIES / BEST PLANNING</u> <u>PRACTICES</u>

Best-planning practices have been considered in the planning process for this site. The silty sand soils and undeveloped nature of the existing site present some significant challenges to meeting Water Quality targets. Additionally, the low-lying nature of the site means significant filling is required to address regional flooding and local drainage considerations. The depth to groundwater also limits some treatment/disposal options.

Early design and modelling efforts concluded that meeting the required water quality targets would not be practical considering the development site on its own. Methods that were investigated include:

- Permeable paving for the central corridor: Treatment benefits for paving the central corridor with permeable paving provided limited benefit whilst increasing cost and ongoing maintenance issues.
- Constructed wetlands at the outlet locations from the site: The high water table and low lying site makes the depths required for bathymetric zones of a constructed wetland unachievable.
- Increased biofilter area:

Further increasing the biofilter area provided limited return on the treatment of water that was able to be directed to them.

However, the existing caravan park directly upstream of the site presents the opportunity to treat currently untreated discharge within the same catchment to ensure the overall project achieves the necessary water quality objectives.

The proposal also seeks to construct an internal drainage system that will double as both water quality and storm flow conveyance. Sections of 'oversized' biofiltration swales (with zero longitudinal grade) are linked via piped culverts under intersecting roads. Refer to design plans by Tattersall Lander (Appendix C) for further details. This will limit the overall gradient of the trunk drainage lines which will in turn reduce imported fill quantities to a point that makes the development viable.

A key concern will be ensuring that flow velocities do not cause scouring damage to the biofilter systems in the base of the swales. This has been addressed via the flat grades, wide cross sections and high roughness values – the flow capacity is provided via additional cross-sectional area rather than grade. Resulting velocities will be discussed in more detail in Section 9 of this report.

7.0 SOIL AND WATER MANAGEMENT

A critical time for increase pollutant loads is during construction, and with this in mind, current practice recommends guidelines from Landcom's "Blue Book". Erosion and sediment control measures should be designed and specified in accordance with the "Blue Book" guidelines, and to Council satisfaction, and be inspected and maintained during the construction phase. This will assist in ensuring adherence to pollutant prevention measures, particularly the removal of suspended solids (sediment).

As the construction footprint of each stage will be in excess of 2,500sq.m, typically it would be expected that a detailed Soil and Water Management Plan would need to be prepared for construction stage prior to release of the Construction Certificate. This would typically include calculations of likely soil loss during construction, instructions on preferred construction sequence and limiting land disturbance, and calculations for the provision and sizing of any temporary sedimentation basin to cover the period of civil works.

8.0 INTEGRATED WATER CYCLE MANAGEMENT

All created lots will be serviced with reticulated water and sewer from the MidCoast Water Services network. There is no reticulated recycled water network available in Harrington.

In line with BASIX and WSUD principles, runoff from future dwelling roof areas is to be directed into rainwater tanks for reuse within the dwelling (toilet and laundry) and external use.

9.0 STORMWATER MANAGEMENT - HYDROLOGY

The nature of urban development is that it can increase the amount of impervious surface in a catchment, which in turn can decrease runoff times and create higher peak flow rates. It is important with new developments that measures are put in place to prevent increases in runoff from the site and resulting downstream flash flooding.

This particular site is in close proximity to the Manning River, and the proposal will include appropriate trunk drainage lines to convey runoff directly to the river without any impact on adjoining properties. Given the critical duration for flooding of the river in this location is significantly longer than the proposed local drainage network, it is not intended to attempt to detain flows back to pre-developed flow rates – the purpose of the two proposed basins is to control and buffer site discharges and velocities in relation to adjoining properties and the sensitive downstream E2 lands.

A detailed 1D node and link XP Storm flood routing model has been prepared to assess the effectiveness of the proposed trunk drainage system.

The model consisted of a series of trapezoidal conduits at 0% grade with a high "Mannings n" roughness value of 0.45 representing the biofilters connected by culverts at minimum grade with trapezoidal conduits and weirs representing the roads crossing the biofilter channels.

Whilst the biofilters are intended to allow infiltration through their base, the infiltration rates over the site are not considered sufficient to provide storm attenuation. For hydrology calculations a conservative approach was taken, assuming the biofilters to already be full to the level of the extended detention depth.

The site was broken up into a series of catchments that drain to the proposed biofilters. Impervious areas were measured directly off the plans with the area of proposed roof added to the catchments.

Impervious areas were modelled with 0.3mm depression storage, 0mm initial and 0mm/hr continuing loss.

Pervious areas were modelled with 0mm depression storage, 0.5mm initial loss with 2.5mm/hr continuing loss.

Rainfall was simulated utilising the Laurenson Method with IFD data sourced from the Greater Taree City Council Handbook of Drainage Criteria.

In consultation with Council engineers, the discharge level for the site has been set to 1.3m AHD as this is the 5 year ARI flood level. A separate Flood Impact Assessment for the development by BMT WBM found that 2100 100yr flood level on the site to be 3.1m AHD at Manor Road and 3m AHD at the Manning River. To increase the capacity of discharge from Basin 1 whilst still being able to maintain cover over the pipe, the outlet pipe has been designed as a 600mm pipe discharging at 1.15m AHD. This has been modelled with a sediment level of

150mm through the pipe to represent a discharge level of 1.3m AHD.

The model was run with three separate scenarios, a Minor Event and two separate scenarios to represent the major event.

Minor Event:

The modelling conditions for the minor event scenario included a range of durations with 5 year ARI discharging to the Manning River with a free outfall at 1.3m AHD. The culverts were then sized to ensure a drainage solution was possible that provided 150mm freeboard in the drainage system during the peak 5 year ARI event.

Major Event:

Two major event scenarios were modelled as the critical duration for the site is much lower than the critical duration for the peak flood levels of the Manning River. The probability of combining the peak 100 year ARI storm event for the site with the peak 2100 100year ARI flood level for the Manning River would have a greater recurrence interval than 100 years.

Both major event scenarios were modelled to have a 50% blockage factor in the culverts by halving the culvert width on the conduit data in XP storm from the design conduits.

The first major event scenario was a 100 year ARI storm event over the site with a 1.3m AHD free outfall. This scenario represents the peak stormflow for the site.

The second major event scenario was a 5 year ARI storm event over the site with a fixed tail water of 3m AHD representing the peak 2100 100yr flood level for the Manning River. This scenario represents a local minor event occurring at the site whilst there was also a peak 2100 100 year ARI regional flood for the Manning River.

The peak water level for the 100 year ARI was used to determine the minimum floor level for the houses in the corresponding streets.

Critical duration events varied across the network, and typically were the shorter events higher up the catchment and longer durations down in the outlet basins.

9.1 FLOW CONVEYANCE RESULTS

As the site discharges directly to a large water body (i.e the Manning River), On-Site Detention was not required and pre and post developed peak flows were not compared.

The model was used to ensure 5 year ARI events were contained in the pit, pipe and channel system as shown by Table 2.

For the 100 year ARI events the model was used to determine minimum floor levels throughout the site and to check that the detention basins prevented uncontrolled flows into neighbouring properties during a 100 year event where flooding was not already occurring. This is shown by Table 3 and Table 4.

Intersection	Road Level (m AHD)	5 Year Water Level (m AHD)	Freeboard Achieved (mm)
Road 2 & 4	3.2	2.909	291
Road 2 & 5	3.13	2.902	228
Road 2 & 6	3.06	2.883	177
Road 2 & 7	2.99	2.782	208
Road 2 & 8	2.92	2.621	299
Road 2 & 9	2.8	2.519	281
Road 2 & 3	2.9	2.456	444
Road 2 Public to Private	2.92	2.341	579
Road 3 & 4	3.185	2.881	304
Road 3 & 5	3.125	2.879	246
Road 3 & 6	3.065	2.787	278
Road 3 & 7	3.005	2.71	295
Road 3 & 8	3.095	2.723	372
Road 3 & 9	2.945	2.663	282
Road 3 & 11	2.885	2.596	289
Road 2(Private) & 4	3.18	2.839	341
Road 2(Private) & 5	3.12	2.839	281
Road 2(Private) & 12(North)	3.06	2.824	236
Road 2 (Private) & 12(South)	3	2.786	214
Road 2 (Private) & 11	2.94	2.661	279
Road 2 (Private) & 10	2.88	2.449	431

Table 2: Peak 5 Year ARI Water Levels

Intersection	Peak 100 Year Water Level - 1.3m AHD Free Outfall (m AHD)	Peak 100 Year Water Level - 3m AHD Tail Water	Minimum Floor Level (m AHD)	
Road 2 & 4	3.191	3.181	3.69	
Road 2 & 5	3.187	3.196	3.70	
Road 2 & 6	3.139	3.147	3.65	
Road 2 & 7	3.071	3.089	3.59	
Road 2 & 8	3.005	3.048	3.55	
Road 2 & 9	2.887	3.03	3.53	
Road 2 & 3	3.064	3.13	3.63	
Road 2 Public to Private	3.031	3.085	3.59	
Road 3 & 4	3.257	3.248	3.76	
Road 3 & 5	3.252	3.243	3.75	
Road 3 & 6	3.198	3.204	3.70	
Road 3 & 7	3.154	3.202	3.70	
Road 3 & 8	3.142	3.195	3.70	
Road 3 & 9	3.105	3.161	3.66	
Road 3 & 11	3.124	3.176	3.68	
Road 2(Private) & 4	3.213	3.211	3.71	
Road 2(Private) & 5	3.202	3.199	3.70	
Road 2(Private) & 12(North)	3.167	3.166	3.67	
Road 2 (Private) & 12(South)	3.141	3.146	3.65	
Road 2 (Private) & 11	3.087	3.123	3.62	
Road 2 (Private) & 10	3.059	3.105	3.61	

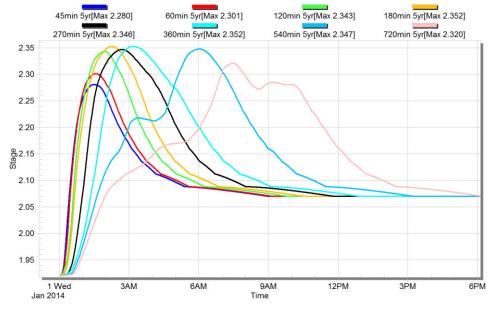
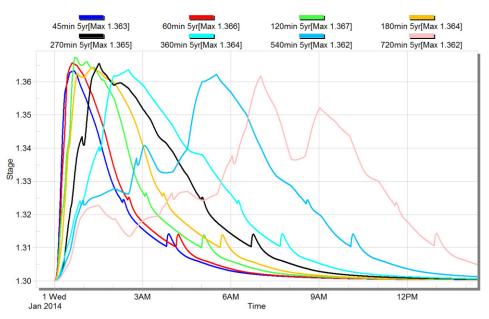
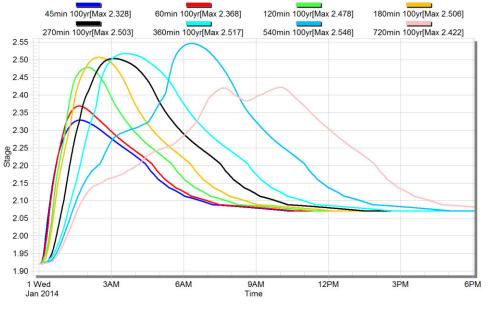

Table 3: Peak 100 Year ARI Water Levels

Table 4: Peak 100 ARI Year Water Levels in Basins

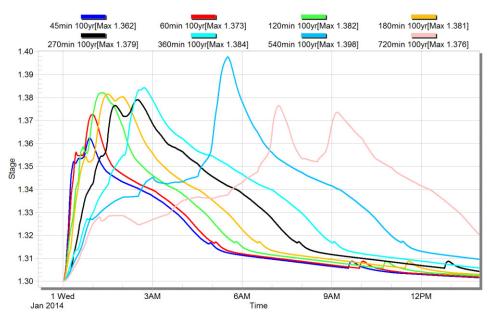
	Discharge Level (m AHD)	Overflow Level (m AHD)	Peak 5 year Water Level (m AHD)	Peak 100 year water level - Free Outfall (m AHD)
Basin 1	1.92	2.65	2.352	2.546
Basin 2	1.3	1.5	1.367	1.398


Figure 2 through to Figure 5 below show the basin elevations. Note that Basin 1 does not completely empty due to the 150mm sediment depth conservatively applied to the whole of the discharge pipe rather than just up to 1.3m AHD.

Basin 1 - 5 Year ARI Water Elevation - Free Outfall



Basin 2 - 5 Year ARI Water Elevation - Free Outfall


Figure 3: Basin 2 - 5 Year ARI Water Elevation

Basin 1 - 100 Year ARI Water Level - Free Outfall

Basin 2 - 100 Year ARI Water Elevation - Free Outfall

Figure 5: Basin 2 - 100 Year ARI Water Elevation

9.2 BIO-SWALE SCOUR VELOCITIES

WSUD Engineering Procedures published by Melbourne Water states that velocities in biofiltration swales should be limited to 0.5 m/s for the five-year ARI event and 1.0 m/s for flows up to the 100-year ARI.

The maximum 5yr event velocities seen in any of the biofilter swales in the are around 0.07m/s with a corresponding depth ranging between 0.85m and 0.55m (above filter base). The equivalent 1% ARI results were around 0.1m/s and 1.2m deep. Both values are well below the target values so scour / sediment washout should not be an issue.

9.3 PUBLIC SAFETY

The proposed design requires the roadside swales to transfer both the minor and major design storms' flows. Significantly flat grades and wide cross sections will ensure low velocities (as described above), but will also result in some larger depths in the major storm event. With floor levels/road levels fixed with the regional flood level and the trunk drainage falling through the site, in the major storm event the swales will actually resemble a string of basins, linked by submerged culverts.

The swales include several design features that will help to ensure public safety;

- Safe Batters Generally, the side of each swale adjacent to the road has been graded at 1(V):6(H) to allow safe egress if anyone accidentally enters the waters during a major storm event. Steeper batters (typically 1(V):3(H) and 1(V):4(H)) exist on the far side of the swale, and will abut fencing to prevent access,
- Flat grades/wide sections conforming to the character of the existing site, the swales will feature very flat grades. This necessitates a wide cross section in order to provide flow capacity. Combined with the high roughness values due to the level of landscaping proposed, velocities will be very low, even in major storm events,

- Well defined edges Generally speaking the streets are straight or the swales are on the inside of the curve, reducing the likelihood of vehicles accidentally turning in to a flooded swale,
- Landscaping Swales will also double as landscape areas, which will include tree plantings and dense macrophyte plantings, so even under major flood conditions the biofilters will provide a clear visual and tactile delineation between the roadway and the deeper drainage channel. People entering a flooded swale will be able to use the vegetation to assist with orientation and stability as they attempt to exit the water,
- Alternate Routes Generally speaking the grid-like street pattern provides alternative access routes if a particular road crossing becomes flooded by extreme flows or culvert blockages. This should ensure there is always another safe route, and pedestrians and vehicles are not forced to cross flooded roadways.

Chapter 7, Book 6 of ARR 2016 describes several methods for determining flood hazard categories and refers to work done by Smith et al, 2014 shown below in Figure 6.

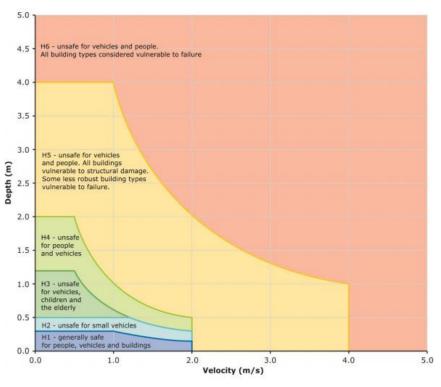


Figure 6: Hazard Categories (Smith et al, 2014)

These categories were used to assess the hazard of water flowing over the intersections in a 1 in 100 year ARI event. As shown in

Table 5 below shows that the flows over these intersections are both low velocity and low depth and as such are classed with a hazard category of "H1 – Generally safe for people, vehicles and buildings"

Intersection	Peak 100 Year Velocity (m/s)	Peak 100 Year Depth (m)	Velocity x Depth	Hazard Category
Road 2 & 4	0	-0.009	0.00	H1
Road 2 & 5	0.454	0.066	0.03	H1
Road 2 & 6	0.57	0.087	0.05	H1
Road 2 & 7	1.128	0.099	0.11	H1
Road 2 & 8	1.099	0.128	0.14	H1
Road 2 & 9	0.75	0.23	0.17	H1
Road 2 & 3	0	0.23	0.00	H1
Road 2 Public to Private	1	0.165	0.17	H1
Road 3 & 4	0.362	0.072	0.03	H1
Road 3 & 5	0.616	0.127	0.08	H1
Road 3 & 6	0.711	0.139	0.10	H1
Road 3 & 7	0.724	0.197	0.14	H1
Road 3 & 8	0.722	0.081	0.06	H1
Road 3 & 9	1.066	0.25	0.27	H1
Road 3 & 11	1.057	0.276	0.29	H1
Road 2(Private) & 4	0.171	0.033	0.01	H1
Road 2(Private) & 5	0.457	0.082	0.04	H1
Road 2(Private) & 12(North)	0.512	0.107	0.05	H1
Road 2 (Private) &				
12(South)	1.1	0.146	0.16	H1
Road 2 (Private) & 11	1.087	0.183	0.20	H1
Road 2 (Private) & 10	1.087	0.225	0.24	H1

Table 5: Intersection Hazard Category

For the proposed flow conveyance bio swales (labelled in Appendix A), velocity is very low due to the flat gradient but the depths are much greater. This has resulted in a higher hazard category for these areas as shown in

Table 6. These higher categories are deemed acceptable as entry for people and vehicles is not intended. Additionally the design features noted at the start of the chapter allow for distinction of these areas and safe egress as water levels begin to rise.

Bio Swale	Peak 100 Yr Velocity (m/s)	Peak 100 Yr Depth (m)	Velocity x Depth	Hazard Category
А	0.017	1.066	0.018	H3
В	0.023	1.087	0.025	H3
С	0.053	1.099	0.058	H3
D	0.062	1.128	0.070	H3
E	0.021	1.152	0.024	H3
F	0.063	1.164	0.073	H3
G	0.088	1.222	0.108	H4
Н	0.096	1.256	0.121	H4
I	0.083	1.301	0.108	H4
J	0.106	1.330	0.141	H4
К	0.095	1.206	0.115	H4
L	0.008	1.102	0.009	H3
Μ	0.026	1.127	0.029	H3
Ν	0.029	1.166	0.034	H3
0	0.032	1.203	0.038	H4
Р	0.028	1.245	0.035	H4
Q	0.029	1.285	0.037	H4

Table 6: Bio Swale Hazard Category

9.4 REGIONAL FLOOD LEVELS

A separate Flood Impact Assessment for the development by BMT WBM found that 2100 100yr flood level on the site to be 3.1m AHD at Manor Road and 3m AHD at the Manning River. In consultation with the DCP and Council engineers, it is proposed to fill the site with the following criteria;

- Minimum future Finished Floor Levels will need to be 3.6m AHD (0.5m freeboard above the flood planning level). As such the minimum fill level on each lot has been designed to be at least 3.46m AHD, to allow direct slab-on-ground construction with no further earthworks.
- All roads (private and public) to be at least 2.7m AHD to limit the maximum 2100 100yr flood depth to 0.4m.

Additionally, the controlling downstream discharge level has been set at 1.3m AHD – the 2100 Mean High Water Mark.

10.0 STORMWATER MANAGEMENT – WATER QUALITY MODEL

10.1 BACKGROUND

The quality of runoff generated by the site is important to ensure the preservation of the downstream environments as an increased proportion of impervious area can lead to a subsequent increase in the quantities of phosphorus and nitrogen entering potential storm water runoff. The aim of this section of the study is to determine what measures need to be undertaken as part of this development to meet the water quality objectives set out in Table 1 in Section 5 of this report.

10.2 MUSIC MODELLING

MUSIC is the Model for Urban Stormwater Improvement Conceptualisation, developed by the Cooperative Research Centre for Catchment Hydrology. MUSIC provides the ability to model both quality and quantity of runoff generated by catchments. Therefore, MUSIC can simulate annual stormwater volumes, and expected annual pollutant loadings.

MUSIC is designed to model stormwater runoff systems in urban catchments. It is used to simulate a range of temporal and spatial scales. Catchment modelling can be performed for areas up to 100 km², with times steps from 6 minutes to 24 hours to match the range of spatial scale. This enables long term modelling of continuous historical rainfall data from pluviograph sources and reflects the ability to account for temporal variation in data for an annual rainfall series directly.

MUSIC also has the ability to model a number of treatment devices and measure their effectiveness in terms of the quantity and quality of runoff downstream. This allows determination of the degree of reduction in annual pollutant loadings.

It is important to note that the MUSIC simulation relies heavily on input variables and it is usually recommended that MUSIC models be calibrated to local conditions wherever possible. When calibration is not possible default values can be used, or

variables can be sourced from values recommended for stormwater modelling in NSW from a technical report prepared for the DECC by the Co-operative Research Centre titled "*Stormwater Flow and Quality, and the Effectiveness of Non-Proprietary Stormwater Treatment Measures*" (Fletcher et al, 2004).

Given the scale of the proposed development site and hence the MUSIC model, it was determined to be unreasonable to perform a calibration in this instance.

10.2.1 CLIMATE / RAINFALL

To accurately model a site of this size, continuous rainfall record spanning at least five years with a six minute timestep is required. Per the recommendations of the 2010 Draft NSW MUSIC Modelling guidelines, rainfall data was obtained from the Bureau of Meteorology in the form of a historic pluviograph record from the Taree rainfall gauge. It is situated approximately 13km from the site and is of similar elevation and temporal pattern.

In accordance with the Draft MUSIC Modelling Guidelines, eight years of data between the dates of 1/1/1967 and 30/12/1975 was chosen. This data produced a mean annual rainfall of 1201mm. It was noted that the long term average rainfall (obtained from the Bureau of Meteorology) for Harrington (Oxley Anchorage Caravan Park, now closed) is 1338mm, and the Council template released recently has a mean value of 1234mm.

For the purpose of this report, all rainfall events in the nominated eight year period have been modelled.

10.2.2 EVAPORATION

To accurately model the outcome of water quality treatment measures, monthly potential evapotranspiration (PET) data is required. Monthly average areal potential evapotranspiration values were read from maps in the 'Climate Atlas of Australia, Evapotranspiration' (BoM, 2001), and are displayed below in Table 7:

Month	Potential Evapotranspiration (mm)
January	180
February	135
March	135
April	90
Мау	65
June	50
July	50
August	70
September	100
October	135
November	150
December	165
Total	1325

Table 7: Monthly Areal Potential Evapotranspiration Figures

10.2.3 NODE PARAMETERS

The MUSIC model was used to simulate the pollutant export generated during an eight year period of average rainfall. Geotechnical investigations indicate that the predominant soil types on site is silty sand. Rainfall-runoff parameters for Silty Sand soils were adopted from Section 3.6.4.3 of the Draft NSW MUSIC Modelling Guidelines (2010) and typical pollutant concentrations derived from Fletcher et al. The adopted parameters can be seen in Figure 7 and Table 8 below.

Note that a Rainfall Threshold of 1.50 mm/day was adopted for the "Sealed Road" node and 0.30 mm/day was adopted for the "Roof" node per Table 3.6 in the Draft NSW MUSIC Modelling Guidelines (2010). A Rainfall Threshold of 1.00 mm/day adopted for all other nodes.

Rainfall-Runoff Parameters	
Impervious Area Properties	
Rainfall Threshold (mm/day)	1.00
Pervious Area Properties	
Soil Storage Capacity (mm)	120
Initial Storage (% of Capacity)	25
Field Capacity (mm)	80
Infiltration Capacity Coefficient - a	200.0
Infiltration Capacity Exponent - b	1.00
Groundwater Properties	
Initial Depth (mm)	10
Daily Recharge Rate (%)	25.00
Daily Baseflow Rate (%)	5.00
Daily Deep Seepage Rate (%)	0.00

Figure 7: Adopted Rainfall-Runoff MUSIC Parameters

	Rural- residential	Unsealed Road	Residential	Roof	Road
Baseflow TSS Mean (mg/L)	14	16	16	-	16
Stormflow TSS Mean (mg/L)	90	1000	140	20	270
Baseflow TP Mean (mg/L)	0.06	0.14	0.14	-	0.14
Stormflow TP Mean (mg/L)	0.22	0.5	0.25	0.13	0.5
Baseflow TN Mean (mg/L)	0.9	1.3	1.3	-	1.3
Stormflow TN Mean (mg/L)	2	2.2	2	2	2.2

Table 8: Adopted MUSIC Pollutant Generation Parameters

10.2.4 EXISTING FLOW & POLLUTANT ANALYSIS

The existing site was modelled to simulate the current pollutant loads from the site. The majority of the site was modelled as a 'rural-residential' landuse, with additional nodes to represent the existing gravel access driveways on the site ('unsealed road' landuse, 50% impervious) and the portion of the existing caravan park draining to Manor Road ('residential' landuse, 60% impervious).

Generally speaking the existing silty sand soils mean there is little runoff and thus little pollution generated from the site.

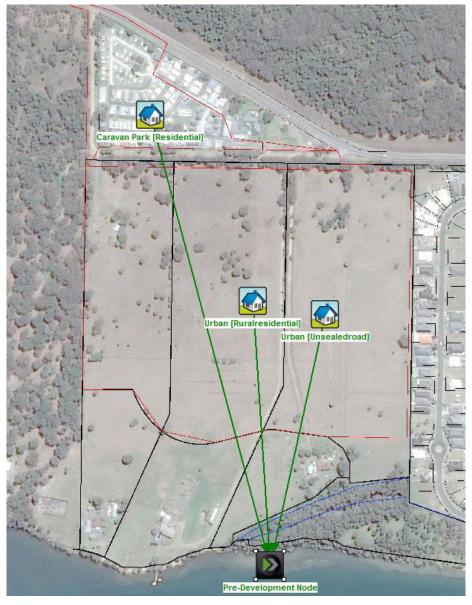


Figure 8: Existing State MUSIC Model

10.2.5 PROPOSED DEVELOPMENT FLOW & POLLUTANT ANALYSIS

Concerted efforts (including detailed MUSIC modelling) were made to try and achieve the required NorBE targets onsite, but this proved impractical given the low target levels calculated from the existing site.

In consultation with Council, it was agreed that treatment of external upstream catchment flows would be undertaken in addition to onsite treatments, to achieve an overall NorBE result.

The proposed development was modelled to determine expected pollutant loads and the effectiveness of the proposed water treatment measures. The catchment was broken up into different areas depending on the surface type, including;

- Roofs areas (measured directly off architectural design plans for the largest housing option for each lot), and modelled as "Roof" nodes with 100% impervious area;
- All road areas (measured directly off design plans) were modelled as "Sealed Road" nodes with the percentage impervious area calculated based from the measured pavement area and an estimated 14sq.m/lot driveway in the verge. The remaining pervious percentage consists of the landscaped verge area.
- The remaining urban area (open space, landscape areas and public reserve) were modelled as residential nodes with the percentage impervious estimated from the remaining driveway area (estimated 30sq.m/lot);

Modelled treatment nodes include;

 Rainwater tanks; The development proposes to build large below-ground rainwater storage and reuse tanks. Each will be a standalone system on an individual block collecting roof waters only, with overflow to an inter-allotment drainage line. They are modelled with 10kL capacity. Captured water has been modelled for reuse in toilet, laundry and external uses only. Internal reuse rates of 0.25kL/day/dwelling were adopted for a dwelling with 1-2 occupants from Table 3-12 in the 2010 Draft NSW MUSIC Modelling Guidelines. An external reuse rate of 112kL/day/dwelling was adopted (distributed by PET minus Rainfall).

For the hotel and clubhouse areas an internal reuse rate of 0.125kL/day/ET were adopted for toilet use only in a dwelling with 1-2 occupants from Table 3-12 in the 2010 Draft NSW MUSIC Modelling Guidelines. Based off MidCoast Water's Equivalent Tenement Policy this rate use been adjusted by a rate of 0.4/unit for the hotel and .0015/sq.m for the clubhouse.

It has been assumed that 100% of the roof areas will be connected to the tanks;

- Biofiltration swales; The trunk drainage corridor has been modified to insert biofiltration systems in the base of each swale. This will offer treatment to runoff directed from the adjacent roads, plus piped inflow from each cross street (which will include rainwater tank overflows and pervious area runoff). Features include a 0.3m detention depth and 0.4m filter depth and an unlined base that will allow discharge via infiltration;
- Constructed Wetland; The buffer strip across the Manor Road frontage of the site will be utilised as a constructed wetland to treat water from Manor Road (including runoff from the caravan park opposite) as well as the 26 dwelling sites proposed adjacent.
- Buffer strips and grassed swales; The southern section of Road 2 will be constructed as one-way crossfall with a concrete edge strip, grassed verge and drainage swale on the low side to convey this water around to proposed 'Basin 2'.

Note: Basin 1 and Basin 2 have been proposed primarily for detention, flow conveyance and peak flow buffering, and are not specifically configured as constructed wetlands. They will however have permanent depths of 0.45m and 0.3m respectively and will be planted with complete macrophyte coverage. It is expected these will provide some additional water quality benefits, but neither have been included in the MUSIC modelling.

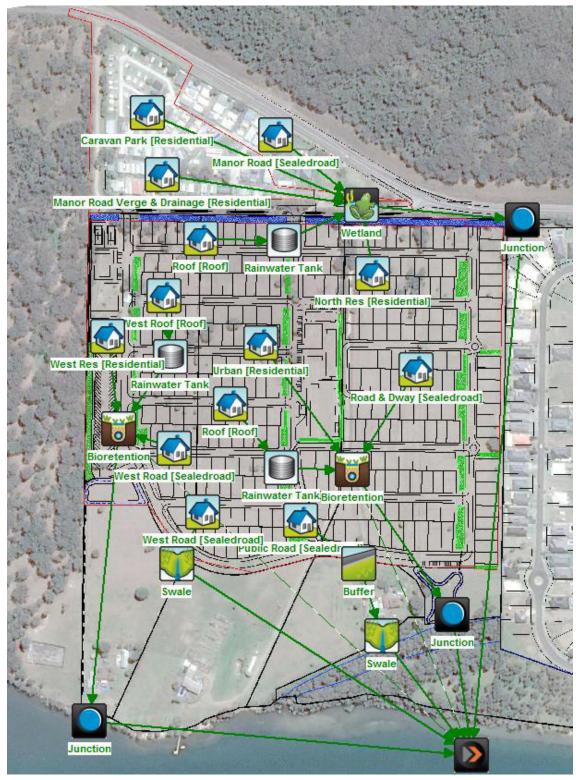


Figure 9: Proposed Development MUSIC Model

10.2.6 COMPARISON OF POLLUTANT RESULTS

Pre- and post-development pollutant loads are compared in the tables below to ensure that the Stormwater Quality Targets have been met. Table 9 shows the effectiveness of the proposed treatment measures if the external caravan park site was not included. As the caravan site to the North will flow through one of the proposed treatment measures this has been included in the model resulting in a treatment train effectiveness as shown in Table 10 demonstrating that the development will create a Neutral or Beneficial Effect on water quality.

(without Caravan Park)
Percentage

Table 9: Comparison of Pre- and Post-Development Pollutant Loads

	Pre-Developed	Post-Developed	NoBE Compliant	Percentage Shortfall
TSS (kg/yr)	10700	2080	Yes	N/A
TP (kg/yr)	14.9	16.4	No	10%
TN (kg/yr)	129	137	No	6%
GP (kg/yr)	246	0	Yes	N/A

* NoBE = Neutral or Beneficial Effect

Table 10: Comparison of Pre- and Post-Development Pollutant Loads
(with Caravan Park included)

	Pre-Developed	Post-Developed	NoBE Compliant
TSS (kg/yr)	15400	4770	Yes
TP (kg/yr)	22.6	21.6	Yes
TN (kg/yr)	186	184	Yes
GP (kg/yr)	977	0	Yes

* NoBE = Neutral or Beneficial Effect

11.0 <u>COSTS</u>

Installation and establishment of all WSUD devices will be undertaken at the developer's expense. Responsibility for ongoing operation and maintenance will be fall variously with the village operators (private road biofilters) and individual owners (rainwater harvesting tanks & pumps). As no costs are to be incurred by Council, a detailed cost analysis has not been provided in this report.

12.0 OPERATION AND MAINTENANCE PLAN

12.1 BIOFILTERS

The biofilter systems are private assets and will need to be maintained as part of the regular maintenance work by village ground staff. Regular maintenance is required to ensure water treatment measures continue to operate in an effective way. These tasks should be performed every three months or after heavy storm events. The maintenance schedule in Appendix B has been prepared as a typical template to direct maintenance staff undertaking routine maintenance and is based on Raingardens and Bioretention Tree Pits Maintenance Plan Example, prepared by the Facility for Advancing Water Biofiltration, Monash University. Relevant sections have been reproduced and/or modified for the specific site conditions.

Is it expected that the finalisation of the biofiltration systems will be deferred until the building construction is essentially completed, ensuring house building activities do not compromise the newly constructed WSUD devices. All biofilter maintenance activities will need to commence as soon as biofilters are planted and brought online and continue for the life of the development.

12.2 RAINWATER HARVESTING TANKS

The individual below-ground tanks will be the responsibility of each individual owner to maintain, in a similar way as other smaller housing rainwater tanks. This includes checking and cleaning gutters, any first flush devices and inlet strainers regularly (quarterly), servicing the pump system as recommended by the pump supplier (typically bi-annually) and irregular tank cleaning and desludging (as required).

13.0 CONCLUSIONS

The results derived from modelling procedures indicate that long term water quality and quantity constraints are appropriately addressed in the proposed development, through the following measures:

- Construction of unlined roadside biofiltration swales,
- Construction of a wetland across the Manor Road frontage to treat untreated upstream catchment waters,
- Installation of min. 10kL rainwater tanks with each proposed dwelling.

More so, the modelling demonstrates that the development will actually have a positive impact on stormwater pollutant levels. From a stormwater quality and quantity perspective, approval is recommended.

14.0 <u>REFERENCES</u>

Draft NSW MUSIC Modelling Guidelines, 2010, BMT WBM

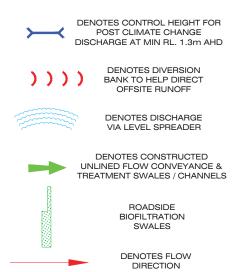
Music Version 5.0 User Manual, 2011, eWater

Policy 11: Land Development Guidelines, Section 13 Water Sensitive Urban Design, 2007, Gold Coast Council

Stormwater Flow and Quality, and the Effectiveness of Non-Proprietary Stormwater Treatment Measures, 2004, Fletcher et al

WSUD Engineering Procedures: Stormwater, 2005, Melbourne Water

Grantley, S and Ron, C, 2016, Safety Design Criteria – Flood Hydraulics, Book 6 in Australian Rainfall and Runoff - A Guide to Flood Estimation, Commonwealth of Australia


Smith G P, Davey E K, and Cox R J (2014) Flood Hazard UNSW Australia Water Research Laboratory Technical Report 2014/07 30 September 2014.

APPENDIX A: DRAINAGE CONCEPT PLAN

LEGEND

CEPT PLAN		COUNCIL MID COAST	REFERENCE 21800158	
DRS ESTATE RRINGTON ROAD I DP 1219123	PARISH	sheet A3		
	SCALE 1:4000 on A3	SHEET No. 1		
		DATE : Plo	Plotted 16:54 05/09/18	
4	COMPUTER FILE : S:\projects\Harrington\dwg\217154_Harrington DA Plans.dwg			

APPENDIX B: BIOFILTER MAINTENANCE TASKS

A. Filter Media Tasks

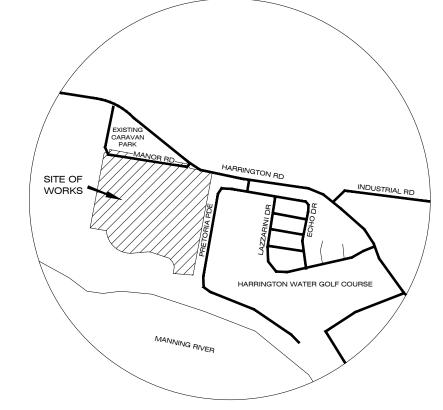
Sediment	Remove sediment build up from the surface of bioretention swales			
Deposition	Frequency – 3 monthly after rain			
Holes or	Infill any holes in the filter media. Check for erosion or scour and repair,			
scour	provide energy dissipation (rocks & pebbles etc) if necessary			
	Frequency – 3 monthly after rain			
Filter media	Inspect for the accumulation of an impermeable layer (such as oily or clayey			
surface	sediment) that may have formed on the surface of the filter media. A			
porosity	symptom may be that water remains ponded in the swale for more than a			
	few hours after a rain event. Repair minor accumulations by raking away			
	any mulch on the surface and scarifying the surface of the filter media			
	between plants			
	Frequency – 3 monthly after rain			
Litter Control	Check for litter (including organic litter) in and around bioretention swales.			
	Remove both organic and anthropogenic litter to ensure flow paths and			
	infiltration through the filter media are not hindered.			
	Frequency – 3 monthly after rain			

B. Horticultural Tasks

Pests and	Assess plants for disease, pest infection, stunted growth or senescent				
Diseases	plants. Treat or replace as necessary. Reduced plant density reduces				
	pollutant removal and infiltration performance				
	Frequency – 3 monthly after rain				
Maintain	Inspect condition of all plants. Replace and dead plants immediately to				
original plant	maintain a minimum density of 4 plants per square metre				
densities	Frequency – 3 monthly after rain				
Drought /	In periods of prolonged drought or extreme heat, the condition of plantings				
Extreme Heat	and site lawn coverage should to be monitored for signs of stress. Watering				
	may be required to ensure plant survival				
	Frequency – As required				

Weeds	It is important to identify the presence of any rapidly spreading weeds as				
	they occur. The presence of such weeds can reduce dominate species				
	distributions and diminish aesthetics. Weed species can also compromise				
	the system's long term performance. Inspect for and manually remove weed				
	species. Application of herbicide should be limited to a wand or restrictive				
	spot spraying due to the fact that the swales are directly connected to the				
	stormwater system				
	Frequency – 3 monthly after rain				
Grassed	Grassed buffer strips treat runoff as it flows off the roads, before it enters				
buffer strip	the bioretention swales. Maintaining a healthy grass cover is important, but				
	the use of fertilisers should be kept to a minimum given their proximity to				
	the drainage network				
Lawn	Healthy site grass coverage is important for pollutant treatment, topsoil				
Fertiliser	erosion control and aesthetics. However, if not correctly used, fertilisers can				
	damage the downstream environment. A low Phosphorus fertiliser with				
	restricted leaching properties such as a Fused Calcium Magnesium				
	Phosphate or TNN Industries 'Formula 1', or equivalent is ideal. The				
	application of fertiliser should be restricted to a maximum of twice a year				

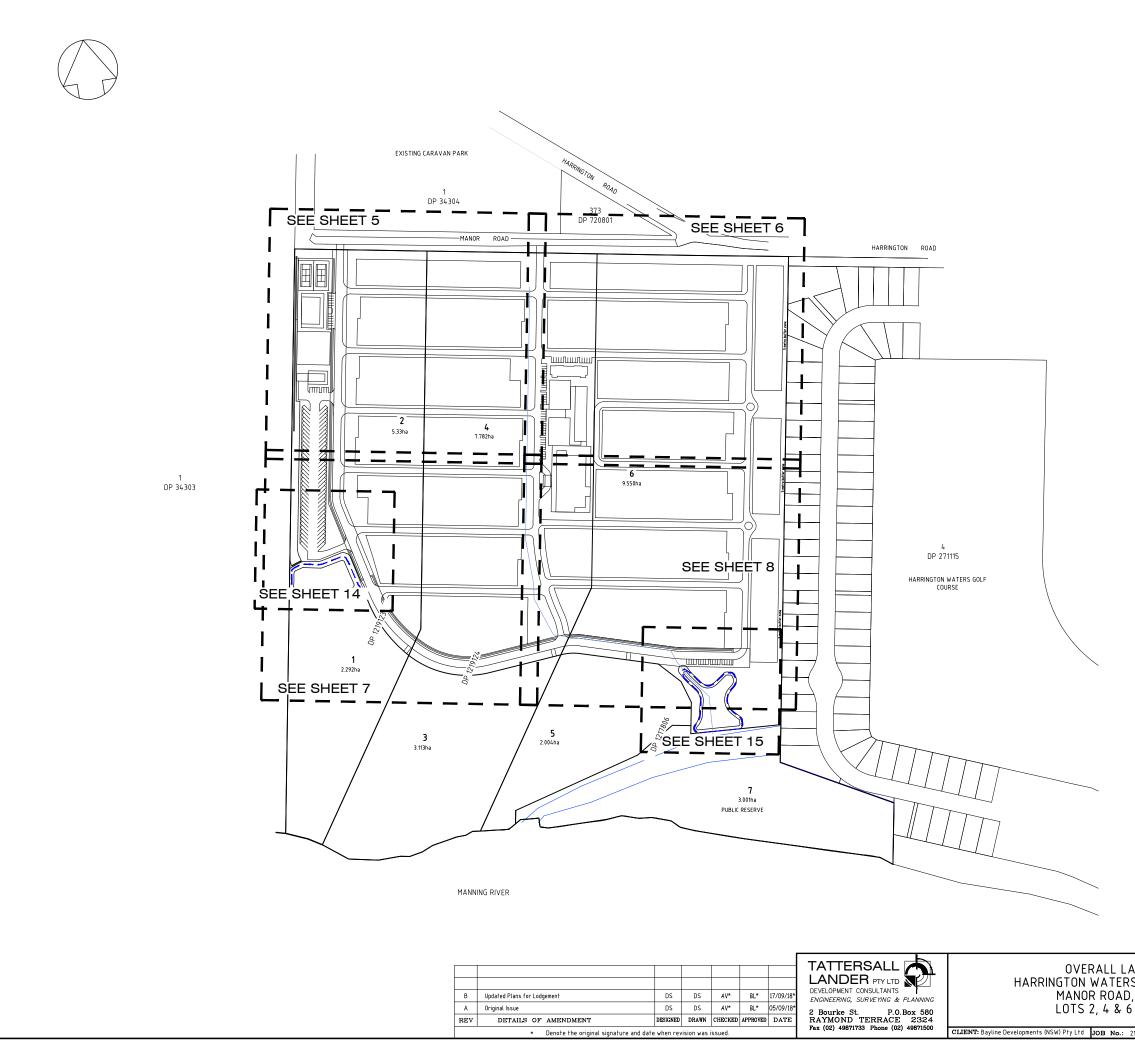
C. Drainage Tasks


Perforated	Ensure that perforated pipes are not blocked to prevent filter media and				
Pipe	plants from becoming waterlogged. A small steady clear flow of water m				
	be observed discharging from the perforated pipe at its connection into the				
	downstream pit some hours after rainfall. Note that smaller rainfall events				
	after dry weather may be completely absorbed by the filter media and not				
	result in flow. Remote camera (eg CCTV) inspection of pipelines for				
	blockage and structural integrity could be useful. Flushing of lines from the				
	flushing points may be required.				
	Frequency – 6 monthly after rain				
High flow	Ensure inflow areas and grates over pits are clear of litter and debris and in				
inlet pits,	good and safe condition. A blocked grate would cause nuisance flooding of				
overflow pits	adjoining areas. Inspect for dislodged or damaged pit covers and ensure				
and other	general structural integrity. Remove sediment from pits and entry sites				
stormwater	(likely to be an irregular occurrence in mature catchment).				
junction pits	Frequency – monthly and occasionally after rain				

APPENDIX C: PROPOSED LAYOUT & DETAIL PLANS

HARRINGTON WATERS LIFESTYLE VILLAGE MANOR ROAD, HARRINGTON DA DESIGN PLANS **ROAD, DRAINAGE & ASSOCIATED WORKS**

		Schedule of Drawings	
Sheet	File Number	Description	Revision
1	21800138	TITLE PAGE, DRAWING INDEX & LOCALITY SKETCH	В
2	21800139	OVERALL LAYOUT PLAN	В
3	21800140	INDICATIVE STAGING PLAN	В
4	21800141	OVERALL DETAIL PLAN	В
5	21800142	DETAIL SHEET 1	В
6	21800143	DETAIL SHEET 2	В
7	21800144	DETAIL SHEET 3	В
8	21800145	DETAIL SHEET 4	В
9	21800146	GENERAL DETAILS & ROAD TYPICAL SECTIONS	В
10	21800147	ROAD LONGITUDINAL SECTIONS	В
11	21800148	ROAD LONGITUDINAL SECTIONS - SHEET 2	В
12	21800149	ROAD LONGITUDINAL SECTIONS - SHEET 3	В
13	21800150	ROAD LONGITUDINAL SECTIONS - SHEET 4	В
14	21800151	BASIN 1 DETAIL PLAN	В
15	21800152	BASIN 2 DETAIL PLAN	В
16	21800153	BASIN SECTIONS	В
17	21800154	TYPICAL DRAINAGE LONGITUDINAL SECTION	В
18	21800155	SITE CUT-FILL PLAN	В
19	21800156	TYPICAL EROSION & SEDIMENT CONTROL PLAN	В
20	21800157	TYPICAL SOIL & WATER MANAGEMENT PLAN NOTES	В


Designed By

LOCALITY SKETCH

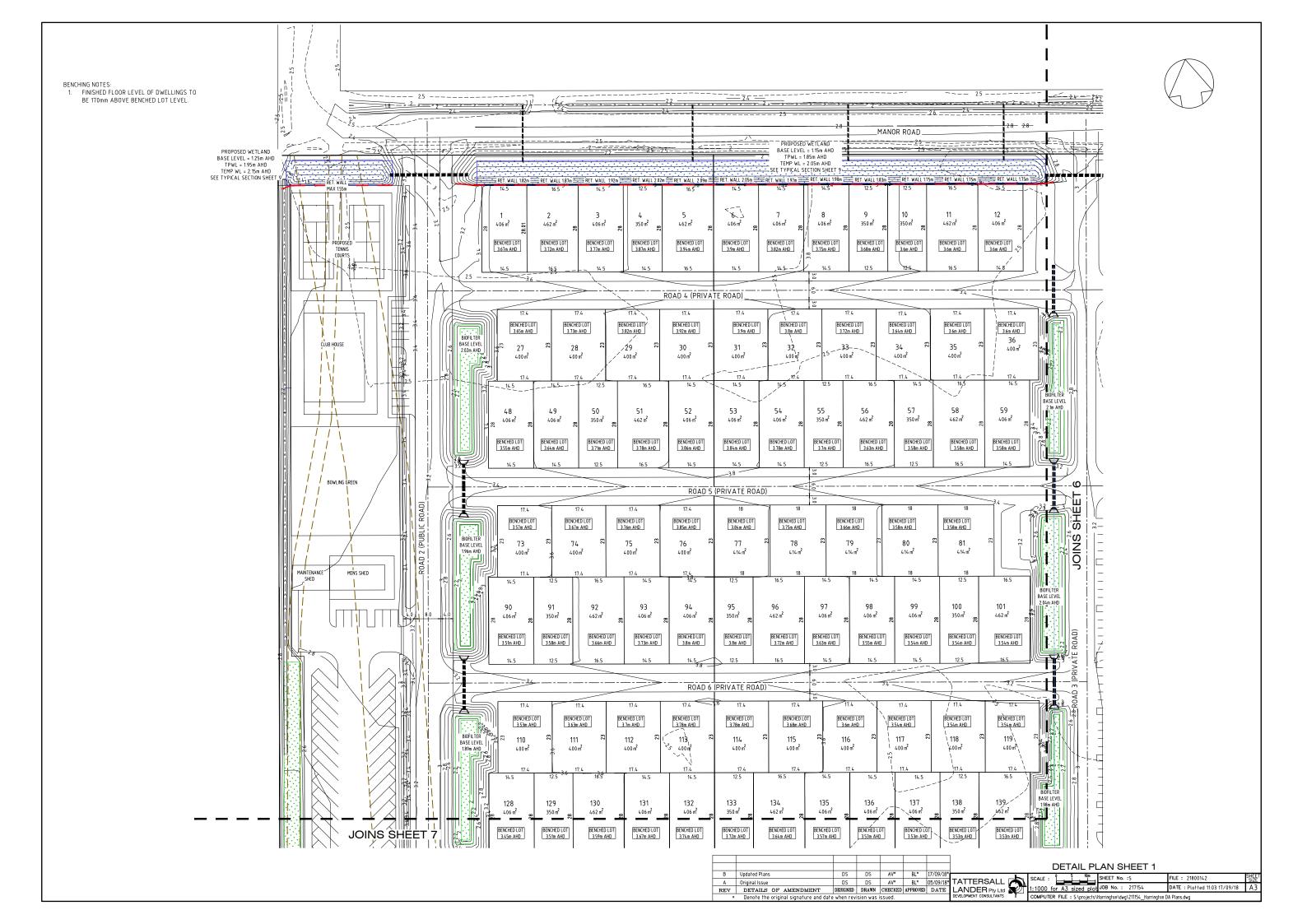
21800138 217154 SHEET No. :1 of 20

FILE : JOB No. :

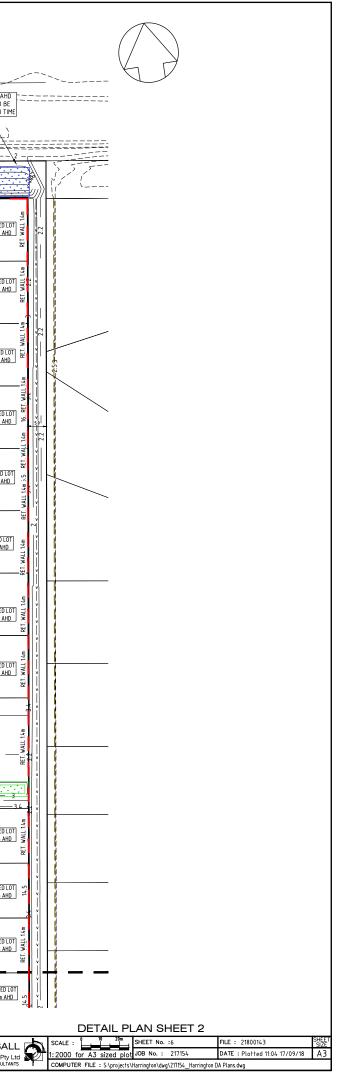
YOUT PLAN 5 LIFESTYLE VILLAGE HARRINGTON IN DP 1219123		COUNCIL MID COAST	REFERENCE 21800139	
		PARISH	SHEET SIZE	AЗ
		SCALE 1:4000 on A3	SHEE' 2	Г No.
		DATE : Plo	otted 11:02 17/0	9/18
17154	4 COMPUTER FILE : S:\projects\Harrington\dwg\217154_Harrington DA Plans.dwg			

STAGE 1 - 29 LOTS STAGE 2 - 25 LOTS STAGE 3 - 22 LOTS STAGE 4 - 21 LOTS STAGE 5 - 22 LOTS STAGE 6 - 22 LOTS STAGE 7 - 40 LOTS STAGE 8 - 22 LOTS STAGE 9 - 20 LOTS STAGE 10 - 45 LOTS STAGE 11 - 24 LOTS

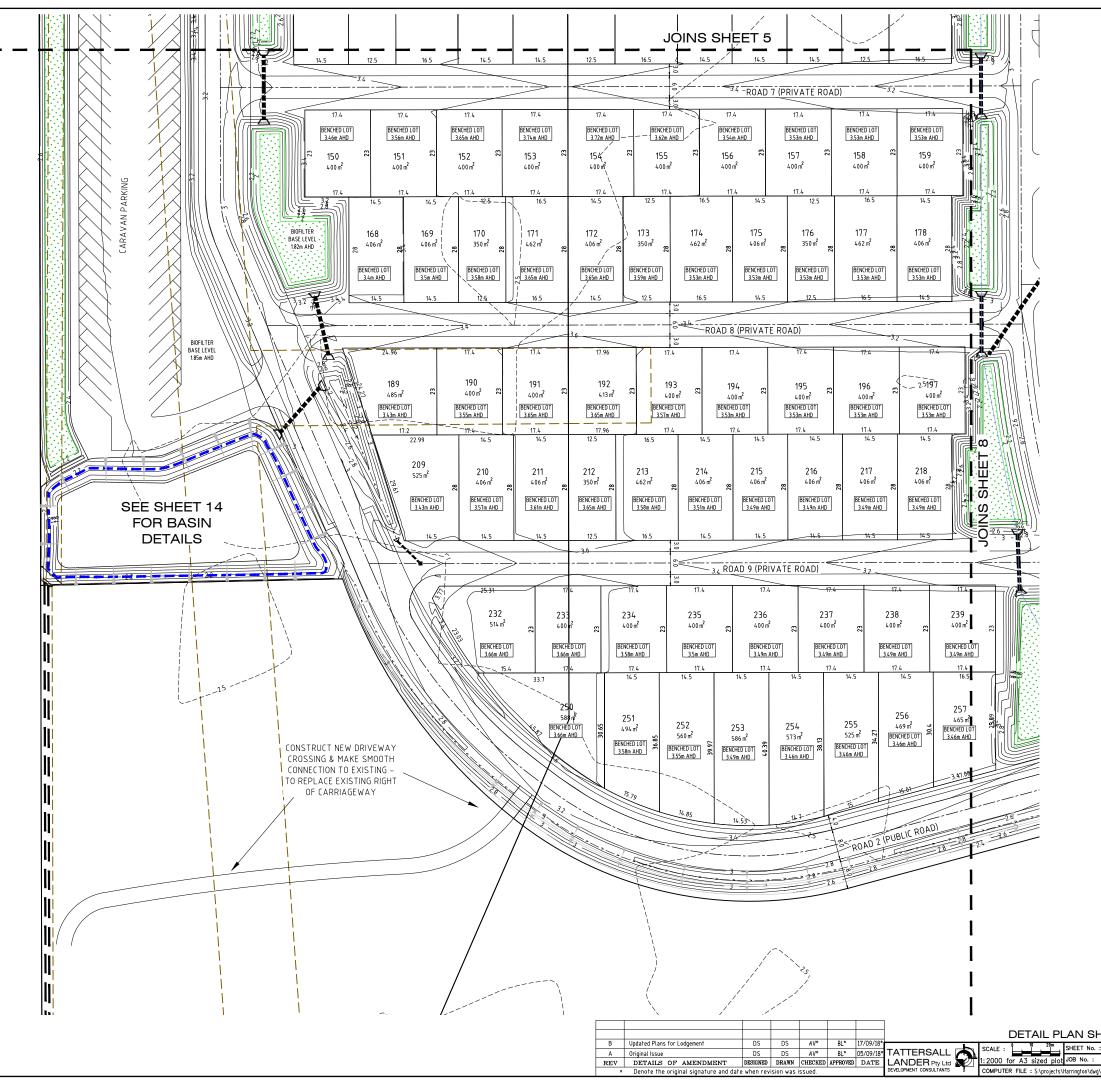
TAGING PLAN LIFESTYLE VILLAGE HARRINGTON N DP 1219123		COUNCIL MID COAST		REFERENCE 21800140	
		PARISH	SHEET SIZE	A3	
		SCALE 1:2000 on A3	SHEE 3	T No.	
		DATE : P	lotted 11:03 17/0)9/18	
154	COMPUTER FILE : S:\projects\Harrington\dwg\217154_Harrington DA Plans.dwg				



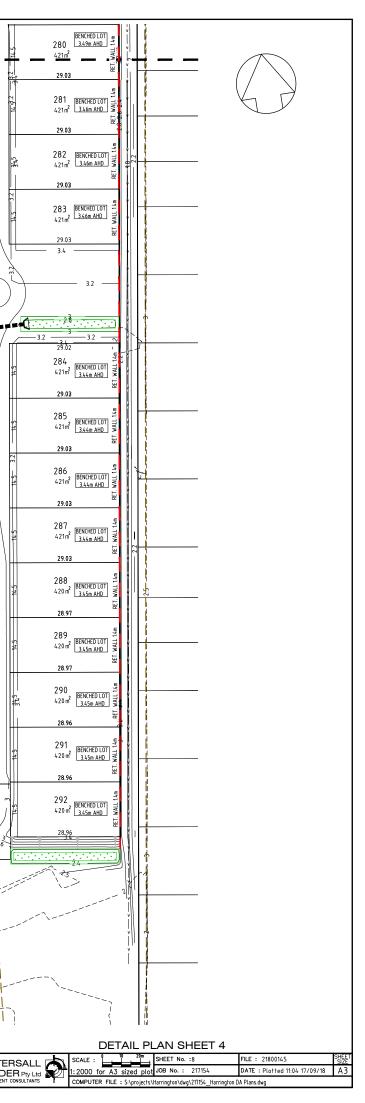
LEGEND

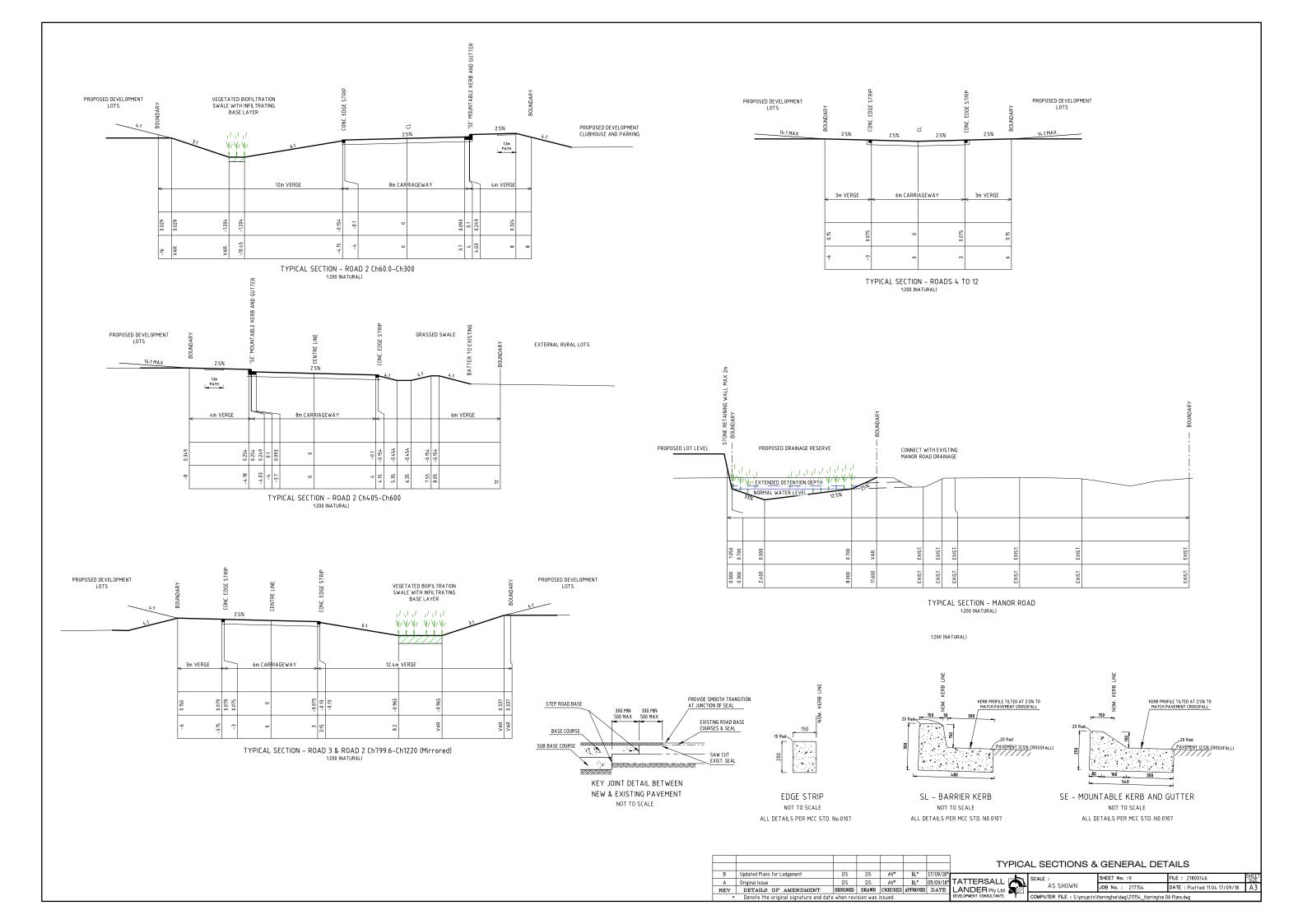

>>

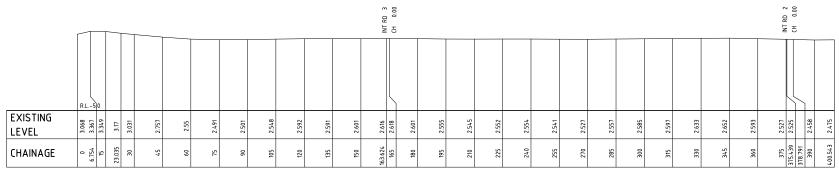
PROPOSED PIPE PROPOSED DRAIN PROPOSED BIOFILTER PROPOSED WETLAND


		OVERALL I	DETAIL PLAN		
SALL 🔽	L	SCALE : 0 10 20m	SHEET No. :4	FILE : 21800141	SHEET SIZE
Pty Ltd	洲	1:2000 for A3 sized plot	JOB No. : 217154	DATE : Plotted 11:03 17/09/18	Α3
SULTANTS	۲- ۱	COMPUTER FILE : S:\projects\h	Harrington\dwg\217154_Harrington D	A Plans.dwg	

BENCHING NOTES: 1. FINISHED FLOOR LEVEL OF DWELLINGS TO BE 170mm ABOVE BENCHED LOT LEVEL.		
	-2	WAY AT 1.95m AHD ABLE DRAIN TO BE 72h DETENTION TIME
	25-25-25 -25-25-20 -15-25-20 25-25-25-20 -15-25-20 25-25-25-20 -15-25-20 25-25-25-20 -15-25-20 25-25-25-20 -15-25-20 25-25-25-20 -15-25-20 25-25-25-20 -15-25-20 25-25-25-20 -15-25-20 25-25-25-20 -15-25-20 25-25-25-20 -15-25-20 25-25-25-20 -15-25-20 25-25-25-20 -15-25-20 25-25-25-20 -15-25-20 25-25-25-20 -15-25-20 25-25-25-20 -15-25-20 25-25-25-20 -15-25-20 26-25-20 -15-25-20 26-25-20 -15-25-20 26-25-20 -15-25-20 26-25-20 -15-25-20 27-25-20 -15-25-20 27-25-20 -15-25-20 26-25-20 -15-25-20 27-25-20 -15-25-20 28-25-20 -15-25-20 28-25-20 -15-25-20 28-25-20 -15-25-20 28-25-20 -15-25-20 28-25-20 -15-25-20	
S SHEET 5	13 14 15 16 17 18 19 20 21 22 23 24 25 26 13 406 m ² 350 m ² 466 m ² 8 406 m ² 350 m ² 406	269 179 m ² BENCHED LOT 358m AHD 29.03 270 BENCHED LOT 358m AHD 29.03
	17.4 17.4	271 ,79 m ² BENCHED LOT <u>355m AHD</u> 29.03 272 <u>479 m² BENCHED LOT</u> <u>355m AHD</u> 29.03
DASE LEVEL 2 Im APD 1	$\begin{bmatrix} 60 \\ 406 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ $	273 29.03 29.03 29.03 29.03 29.03
BOFLITER BASE LEVEL 2.00 APD 2.00 APD 2.00 APD 2.00 APD	MINIMUM PLOOR LEVEL 3.73m AHD 3.73m AHD 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.	275 479 m ² <u>BENCHED LOT</u> <u>351m AHD</u> 29.03 276 479 m ² <u>BENCHED LOT</u> <u>351m AHD</u>
	JU JU <td< th=""><th>29.03 3.4 3.2</th></td<>	29.03 3.4 3.2
	FLOOR LEVEL FLOOR LEVEL FLOOR LEVEL BENCHED LOT BENCHED LOT	29.02 3.4 29.02 277 BENCHED LOT 3.49m AHD 29.02
A TE ROAD)	140 141 142 143 144 145 146 147 148 149 Bofilite 140 141 142 143 144 145 146 147 148 149 140 141 142 143 150 m² 350 m² 350 m² 8 350 m² 8 06 m²	278 421m ² BENCHED LOT 34.9m AHD 29.03 279 421m ² BENCHED LOT 3.49m AHD 29.03 29.03
	PLOOR LEVEL 3.7m AHD PLOOR LEVEL 3.7m AHD PLOOR LEVEL B Updated Plans for Lodgement B Updated Plans for Lodgement DS DS AV* BL* 17/09/18*	280 421m ² BENCHED LOT 3.49m AHD 3.49m AHD AHD FATTERSALL LANDER Pty Lt DEVELOPMENT CONSULTANTS

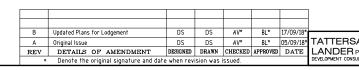



$\langle \rangle$	$\langle \rangle$
(/	$\left(\right)$
K	\overrightarrow{D}
L	


	I				
		DETAIL PL	AN SHEET 3		
ALL	The second secon	SCALE : 0 10 20m	SHEET No. :7	FILE : 21800144	SHEET
Pty Ltd		1:2000 for A3 sized plot	JOB No. : 217154	DATE : Plotted 11:04 17/09/18	A3
ULTANTS	- Y-	COMPUTER FILE : S:\projects\	Harrington\dwg\217154_Harrington D	A Plans.dwg	

BENC	HING NOTES:
1.	FINISHED FLOOR LEVEL OF DWELLINGS TO
	BE 170mm ABOVE BENCHED LOT LEVEL.

14.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12	14.5
3.4 COAD 12 (PRIVALE ROAD) 17.4 <td><u></u></td>	<u></u>
1 1	
3.2 3.2 <td>28 2</td>	28 2
	\mathbb{N}
- I - I - I - I - I - I - I - I - I - I	
200 ≈ 198 ≈ 199 ≈ 200 ≈ 201 ≈ 202 ≈ 203 ≈ 204 ≈ 205 ≈ 206 ≈ 207 ≈ 208 ≈ 400 m²	9. #
17.35 17.4 <t< td=""><td>· · ·</td></t<>	· · ·
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3.2
BENCHED LOT BENCHE	3 - 14 S
2.6 1.1 RUAD 10 (PRIVATE RUAD) 3 -3 -10 0 -10 26.18 -2.37.4 17.4 17.4 17.4 17.4 17.4 17.4	-
BEXCHED LOT 349m AHD 240 m/ / 241 m 242 m 244 m 245 m 246 m 247 m 248 m 249 m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AD)
	ATE ROA
	ROAD 2 (PRIVATE RO
	R0A
Construction C	
	57
	, The second se
	>
CONSTRUCT NEW DRIVEWAY	
CROSSING & MAKE SMOOTH CONNECTION TO EXISTING - TO REPLACE EXISTING RIGHT	, 1 - -
OF CARRIAGEWAY	+'
	<u> </u>
B Updated Plans for Lodgement DS AV* BL* 17/09/18* A Original Issue DS DS AV* BL* 105/09/18*	ATTER
REV DETAILS OF AMENDMENT DESIGNED DATE LA * Denote the original signature and date when revision was issued. DATE LA	ANDEF /ELOPMENT COM

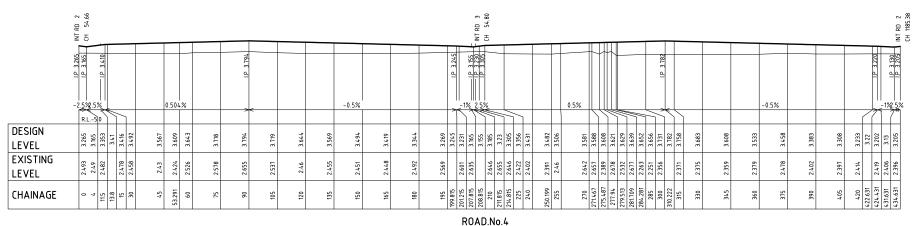


	INT RD 1 CH 375.44 L.P.					CH 0:00	-					CH 0.00					INT PD	CH 0.00					INT RD 7 CH 0.00						CH 0.00					INT RD 9 CH 0.00																		INT RD 3 CH 427.74	
		VC	00 m d_ 25VC		0000.6 -7.1	0000	0575 41						I.P. 3.160			I.P 3.160		I.P 3.090				1.P 3.090		I.P. 3.020						I.P. 2.950										I.P. 3.286													
	3%8%	%4.567	%	0%	-0.3	318%			0%		-0.	318%		_	0%		< -0.3	18%	< (0%		-*-	0.318%	*		0%			-0.293%			0.024%		0.3%		_	0.451%			<u> </u>						-0.39	6					0%	⇒
DESIGN	R.L6	60]	\mathbb{H}		₽	++	\square	\square	\square	\square	\square	\square			$\left.\right\}$	_			+			_	++	+				+	++	+				\vdash	\square	_				\rightarrow												+	-
LEVEL	2.74	2.677	2.669	2.642	2.654	2.129 2.729 2.85	3.157 3.253	88	3.296 3.265	3.248 3.23	3.23	3.23 3.23	3.195	3.188 3.16	3.16	3.16 3.16	3.127	3.125 3.09	3.09	3:09	3.09	3.09	3.055	3.02 3.02	3.02	3.02	3.02	3.02	3.982	2.95	2.945	2.942	2.938	2.938	2.95 2.992	3.059	3.127	3.194	3.258	3.262	3.257	3.212	3.167	3.122	3.077	3.048		6.00	746.7	C 20 C	70.7	2.807 2.807 2.8	
EXISTING LEVEL	2.525		2.63 1.958	1001	2.521	2.532		2.526	2.519 2.493				2.689			2.594	2.582	2.581 2.569		2.586	2.625	2.653	2.677	2.683	2.657	2.604	2.604	2.597 2.586 2.530	2.52	2.464	2.428	2.471	<u>ن</u> ا	2.515	2.518 2.525	2.511	2.625	2.58	2.546	2.545 2.557	2.543	2.525	2.51	2.478	2.456	2.492 2.514	597 6	2005	C0C.2	10E C	166.5	2.394 2.394 2.394 2.394	2.372
CHAINAGE	0	6.093	6.398 7.815	8.471 9.093	9.878 9.878	12.2	24.7 30	37.2 43.657	45 54.657	60 65.657	75 83.264	90 105	106.657	128.657	150	165 169.657	180	180.657	195	210	225	232.657	243.657	254.657 255	270	283.75	285	300 302.145	315 315	326.059 330	345	360	375	377.469 379.173		4 05	420	435	449.071	450.459	465	780	495	510	525	534.92 540	555		0/0 10	COC 903	000	613.685 615 617.456 630	

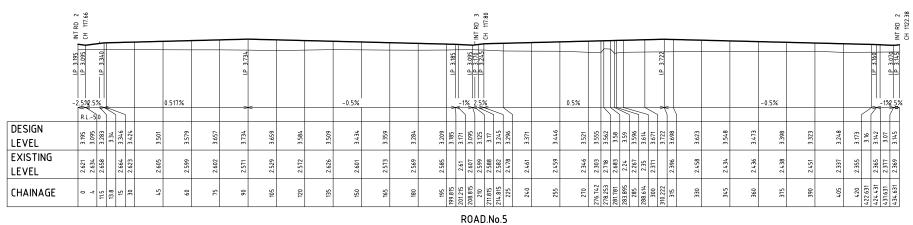
ROAD.No.2

																	INT RD 10 CH 213.77	2			INT RD 11 CH 222.81				T RD	CH 0.00				INT RD 13 CH 376.53				INT RD 5 CH 434.63				ß	CH 434.63		_
					I.P 2.800						I.P. 2.80D		I.P 2.875			I.P 2.875		I.P 2.935		I.P 2.935	IP 2 995				I.P. 2.995	I.P 3.055			I.P. 3.055	10 0 14c	ctr.c. 4.1		I.P 3.115	I.P. 3.175				I.P 3.175 I.P 3.205	I.P. 3.235		I.P 3.235
	R.L50		0%						0%			<0.434%	[;] ~		0%	>	0.375%		0%		0.375%	5	0%		0.37	5%		0%		0.375%		0%		375%		0%		0.3756%	375%	0%	*
DESIGN LEVEL	2.8 2.8 2.8	2.8	2.8 2.8 2.8 2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8 2.8	2.845	2.875 2.875	2.875	2.875	2.875	2.905	2.935 2.935	2.935	2.935 2.935	2.965 2.969	2:995	2.995	2.995	2.995 3.018	3.055	3.055	3.055	3.055	3.06/ 3.085 3.115	3.115	3.115	3.115 3.115	3.145 3.155 3.175	3.175	3.175	3.175 3.175	3.175 3.175 3.204	3.205 3.235 3.235	3.235	3.255
EXISTING LEVEL	2.372 2.359 2.305	2.339	2.299 2.119 2.144 2.564	2.573 2.095 2.095	2.222	2.221	2.123 2.117	2.149	2.099	2.08	2.117 2.128	2.133	2.115 2.087	2.125	2.166	2.177	2.185 2.189	2.192	2.171	2.278 2.232	2.14.2 2.129	2.253	2.215	2.196	2.188 2.183	2.102 2.186 2.186	2.188	2.192	2.246	2.29	2.261	2.228	2.29 2.321	2.369 2.368 2.367	2.367	2.391	2.404	2.349 2.366 2.394	2.396 2.407 2.397	2.365	2.5/
CHAINAGE	630 637.086 645	660	675 678.071 680.732 682.596	686.19 688.535 600	691.845 693.089	712.5 720	736.13	750	765	780	795.599	810	816.878 825	840	855	870 870	880.836	888.836 900	915	958.256	94.3.836 94.5	096	975	066	998.836 1005	1014.836	1035	1050	1061.836	069.836 1077.836	1080	1095	~ [본]	1122.378 1125 1130.378	114.0	1155	1165.431 1169.412	1177.378 1177.378 1185	1185.378 1193.378 1200	1215	1219.378

ROAD.No.2 H=1:2000 V=1:400

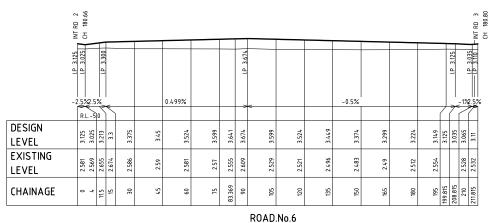


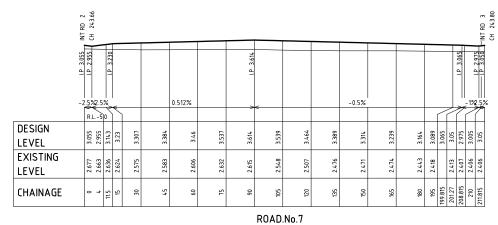
ROAD LONGITUDINAL SECTIONS


SALL	SCALE :	SHEET No. :10	FILE : 21800147	SHEET SIZE
	AS SHOWN	JOB No. : 217154	DATE : Plotted 11:04 17/09/18	Α3
NSULTANTS	COMPUTER FILE : S:\projects\	Harrington\dwg\217154_Harrington D	A Plans.dwg	

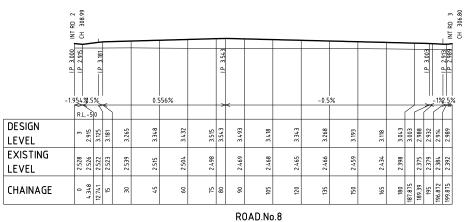
	INT RD 1 CH 163.62 L.P.	INT RD 4	INT RD 5 CH 211.81	INT RD 6 CH 211.81	INT RD 7 CH 21181	INT RD 11 CH 0.00 INT RD 8 CH 199.88	INT RD 10 CH 0.00 INT RD 9 CH 185.11	INT RD 2 CH 617.46
	500 C 25VC 3787874-749%	0% 0.375% 0%	000 01 01 m m d - 0.375% 0%	071 K d d d d d d d d d d d d d d d d d d		0% +0.388%	0% -0.369% 0%	00872 d -2.5%
DESIGN LEVEL	2.685 2.685 2.625 2.621 2.601 2.592 2.592 2.592	2.587 2.587 2.577 2.58 2.58 2.564 2.664 2.664 2.666 2.566 2.565 3.177 3.177 3.207 3.207	3.26 3.26 3.23 3.211 3.2 3.2 3.2 3.2 3.2 3.2 3.16 3.16 3.16 3.14 3.14	3.14 3.14 3.14 3.11 3.11 3.11 3.08 3.08 3.08 3.08 3.08	3.08 3.08 3.064 3.05 3.02 3.02 3.02	3.02 3.02 3.02 3.02 3.02 3.02 3.02 3.02	2.96 2.96 2.96 2.905 2.905 2.905 2.9 2.9 2.9 2.9 2.9 2.9 2.9	2.9 2.8 2.8
EXISTING LEVEL	2.616 2.584 2.584	2.676 1.884 1.934 2.668 2.668 2.679 2.679 2.709	2,64,3 2,652 2,655 2,655 2,659 2,649 2,649 2,677 2,578 2,574 2,578 2,574 2,578 2,574 2,578 2,574 2,578 2,578 2,578 2,573 2,573 2,573 2,573 2,573 2,575 2,5777 2,5777 2,5777 2,5777 2,5777 2,5777 2,57777 2,57777 2,57777 2,57777777777	2.537 2.534 2.513 2.513 2.532 2.532 2.532 2.537 2.537 2.537	2.423 2.423 2.402 2.406 2.413 2.413 2.413 2.413	2.424 2.404 2.403 2.403 2.403 2.403 2.403 2.403 2.403 2.403 2.399 2.399 2.392 2.392 2.393	2.378 2.392 2.405 2.402 2.402 2.402 2.402 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.4	2.404 2.401 2.394
CHAINAGE	0 2 6 6.454 6.856 7.257	7.513 8.114 8.777 9.449 9.454 10.771 12.454 12.454 12.5 15 5 30 30 31.5	45 46.798 54.798 60 62.798 75 90 105 105 109.798 117.798 120 120	150 165 172.798 180.798 180.798 188.798 195 195 210	225 235.798 240 243.798 251.798 255 255 255	285 295.622 296.6339 296.339 296.339 296.339 296.339 296.339 296.802 306.802 314.171 315 330	345 360.191 360.425 3716.01 376.707 376.707 399.023 405 411.026	420 423.743 427.743

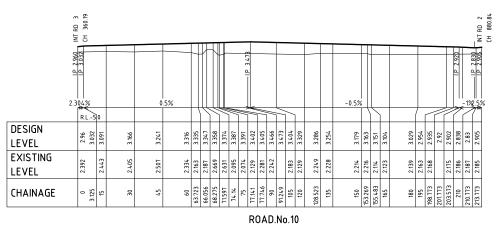
ROAD.No.3 H=1:2000 V=1:400

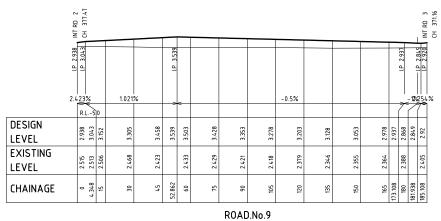

H=1:2000 V=1:400

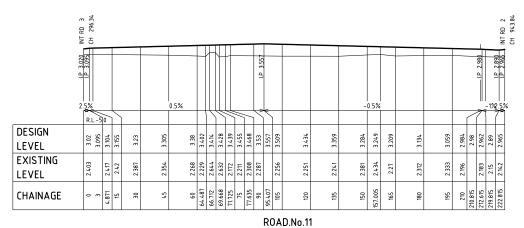

H=1:2000 V=1:400

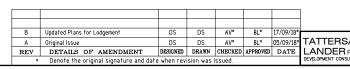
	-					0 1 ±		RC	DAD LONGITUD	INAL SECTIONS	3	
L	В	Updated Plans for Lodgement	DS	DS	AV*		17/09/18*	b	SCALE :	SHEET No. :11	FILE : 21800148	SHEET
	Δ	Original Issue	DS	DS	AV*	BL*	05/09/18*	TATTERSALL	OUNCE !	SHEET NO. 111		
F	REV	DETAILS OF AMENDMENT	DESIGNED		CHECKED			LANDER Pty Ltd N	AS SHOWN	JOB No. : 217154	DATE : Plotted 11:05 17/09/18	A3
	*	Denote the original signature and date	e when revi						COMPUTER FILE : S:\projects\	Harrington\dwg\217154_Harrington E)A Plans.dwg	


ROAD LONGITUDINAL SECTIONS

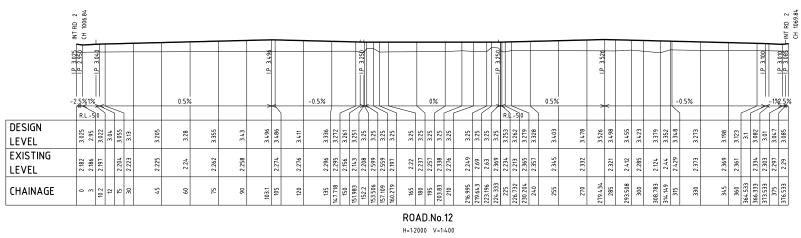

H=1:2000 V=1:400


H=1:2000 V=1:400

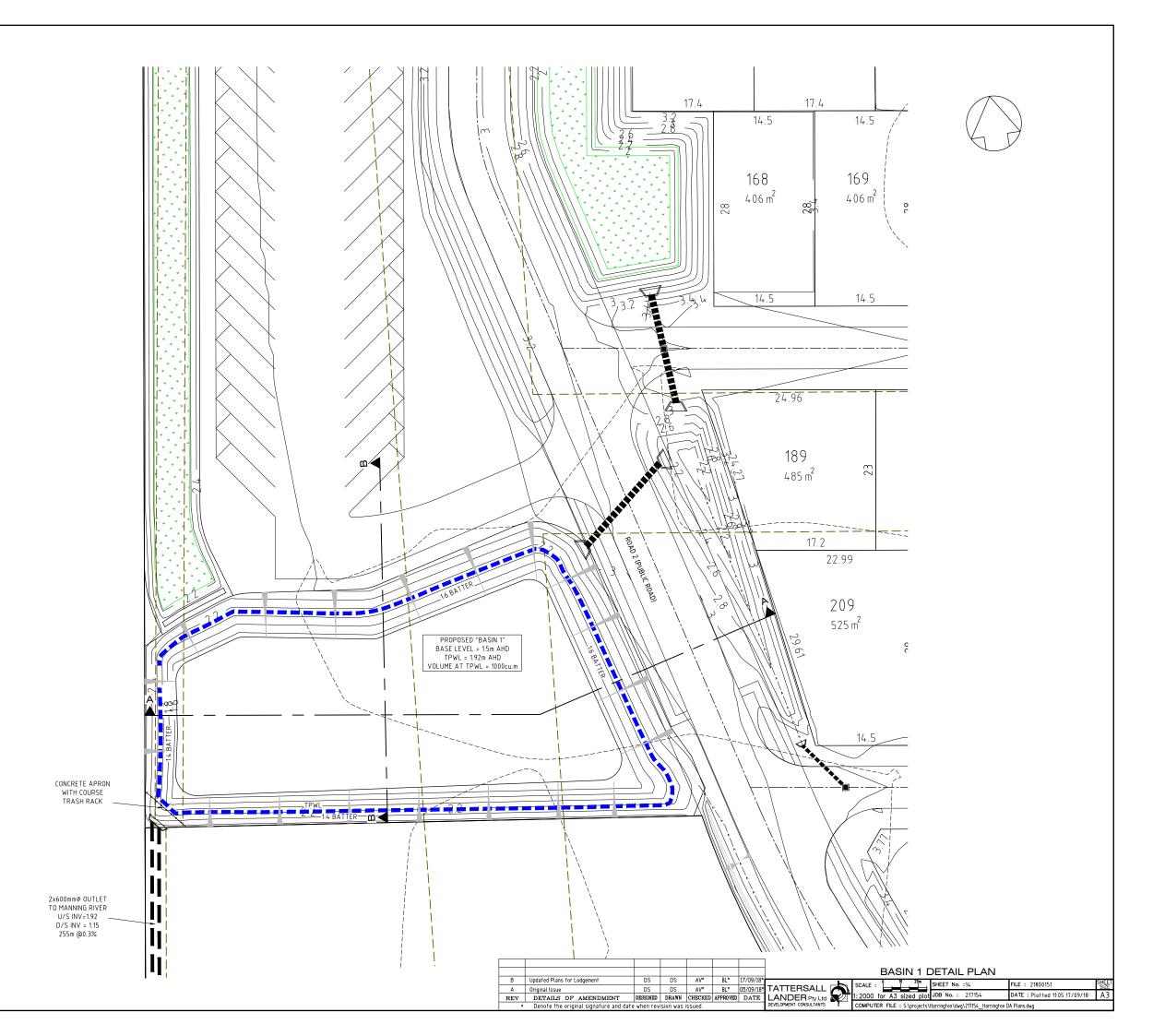

H=1:2000 V=1:400

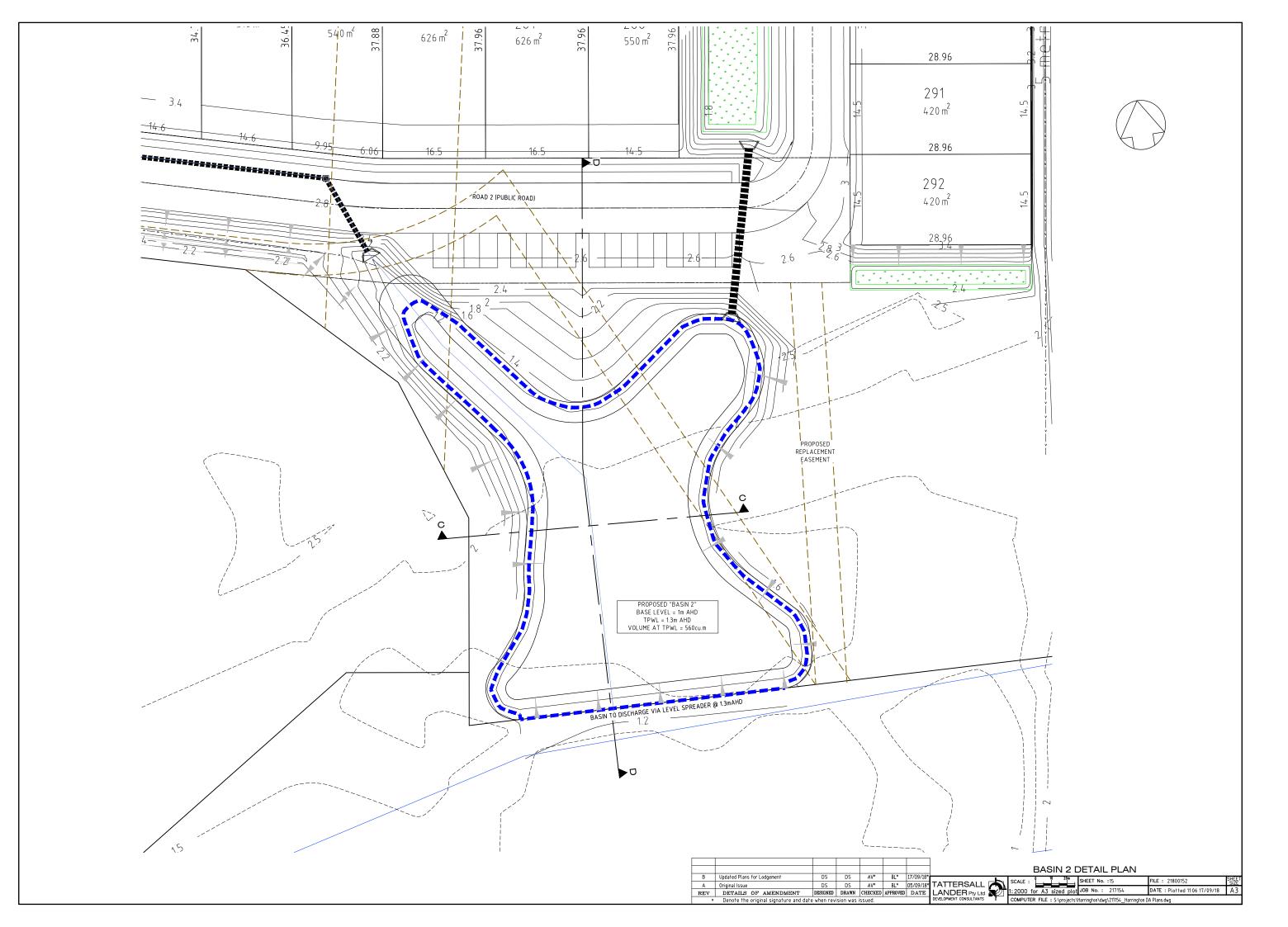

H=1:2000 V=1:400

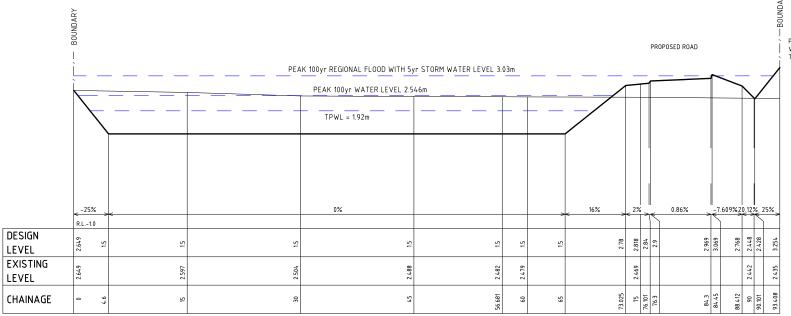
H=1:2000 V=1:400

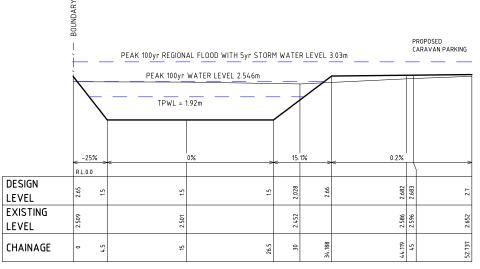


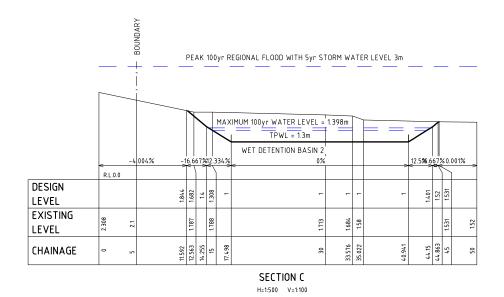
H=1:2000 V=1:400

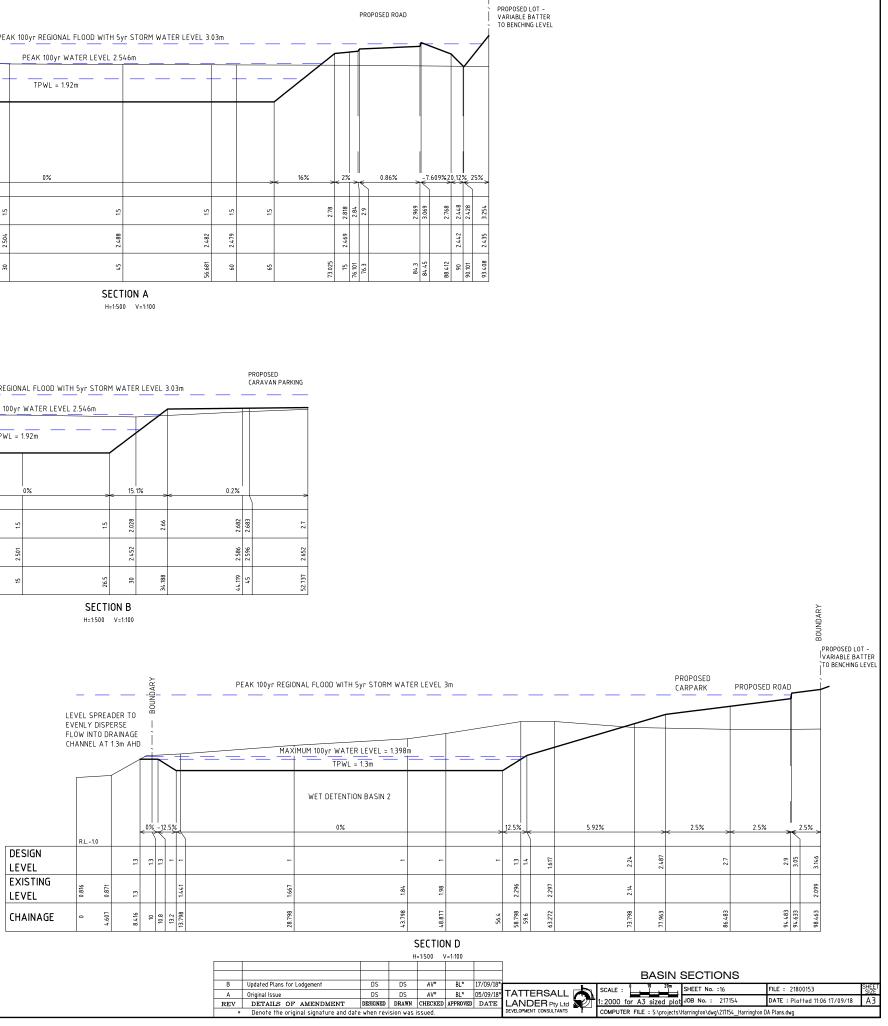


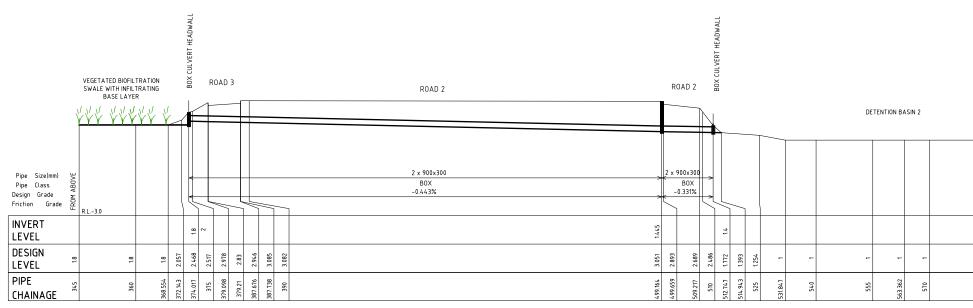

ROAD LONGITUDINAL SI	ECTIONS
----------------------	---------


SALL	SCALE :	SHEET No. :12	FILE : 21800149	SHEET SIZE
	AS SHOWN	JOB No. : 217154	DATE : Plotted 11:05 17/09/18	A3
NSULTANTS	COMPUTER FILE : S:\projects	\Harrington\dwg\217154_Harrington D	A Plans.dwg	


								RC	AD LONGITUD	INAL SECTIONS	S	
	В	Updated Plans for Lodgement	DS	DS	AV*		17/09/18*		SCALE :	SHEET No. :13	FILE : 21800150	SHEET
	A	Original Issue	DS	DS	AV*	BL*	05/09/18*	TATTERSALL	ooner .	SHEET NO. 15	TILE . 21000150	SIZE
R	EV		DESIGNED		CHECKED			LANDER Pty Ltd	AS SHOWN	JOB No. : 217154	DATE : Plotted 11:05 17/09/18	A3
	*	Denote the original signature and dat							COMPUTER FILE : S:\projects\	.Harrington\dwg\217154_Harrington (DA Plans.dwg	







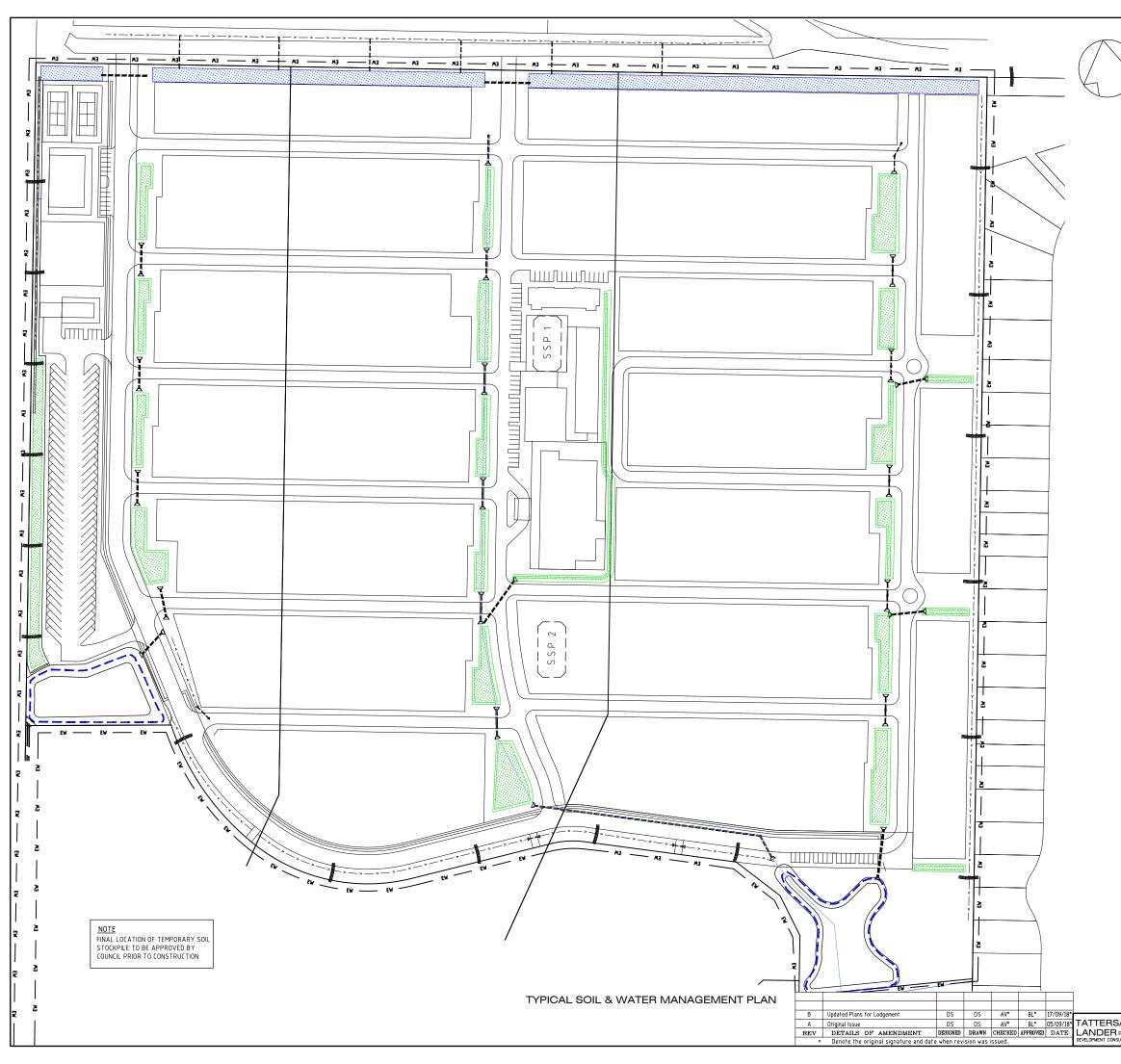
	BOX CULVERT HEADWALL P D V OL	 B0X CULVERT HEADWALL 	SWALE V	TED BIOFILTRAT WITH INFILTRAT ASE LAYER		— BOX CULVERT HEADWALL	ROAD	5	BOX CULVERT HEADWALL		SWALE WITH	BIOFILTRATION HINFILTRATING LAYER		 B0X CULVERT HEADWALL 	ROAD	6	BOX CULVERT HEADWALL		VEGETATED BIOFILTRAT SWALE WITH INFILTRATI BASE LAYER			- BOX CULVERT HEADWALL	R0 <i>4</i>	D7	BOX CULVERT HEADWALL		EGETATED BIOFIL WALE WITH INFIL BASE LAYE	TRATING		. BOX CULVERT HEADWALL	ROAD	© BOX CULVERT HEADWALL	1
			<u> </u>	<u> </u>	$\psi \psi \psi \psi \psi$	¥⁄ f			¥۲		/*****	<u> </u>	Ϋ́ΎΎ	4		\square	Ŵ	ΥΥ΄. ΥΥ΄	<u>☆☆☆☆☆ ☆☆☆</u>	<u>Ý Ý</u> ý		4			\// //	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		¥¥ ¥					\v V V
Pipe Size(mm) Pipe Class	600x300	×		SWALE			600x3		<		SWALE			~	900×30 BOX	~	<		SWALE			~	2 x 900		<		SWALE			~	2 x 90 B0)		
Design Grade Friction Grade	-0.4%	k		0%		\rightarrow	-0.45		Ł	-	0%		+	\star	-0.4%		\leftarrow		0%			\rightarrow	-0.49				0%			×	-0.45		Æ
INVERT LEVEL	R.L2.0	23				2.1	5		2.24	2:04				2.04	2.24		2.18					2.18			2.12					1.92		2	1.86
SURFACE LEVEL	3.234 3.337	3.005		2.1		2.175 2.938	3.315	3.283	2.894	2.04			2.04	2.862	3.229 3.148	3.235	2.829	1.98	1.98	1.98	1.98	2.797	3.2 3.088	3.198	2.774 1.921	1.92	1.92	1.92	1.92	2.724	3.14 3.103	3.163	2.041
PIPE CHAINAGE	0 13.68	15.001	R	45		60 63	64.704	75	78.001	81.005	105		120 123.002	126.001	128.79	139.46	141	14.4.004 150	165	180	186.001	189.015	190.504	202.51	204	210	225	240	249.076	252	253.506 255	265.647	270

ROAD 3 DRAINAGE LINE

ROAD 3 DRAINAGE LINE

-					01 ±			TYPICAL DRAII	NAGE SECTION	I	
В	Updated Plans for Lodgement	DS	DS	AV*		17/09/18*		SCALE :	SHEET No. :17	FILE : 21800154	SHEET SIZE
A	Original Issue	DS	DS	AV*	BL*	05/09/18*	TATTERSALL I TAT				
REV	DETAILS OF AMENDMENT	DESIGNED	DRAWN	CHECKED		DATE	LANDER Pty Ltd	AS SHOWN	JOB No. : 217154	DATE : Plotted 11:06 17/09/18	A3
*	Denote the original signature and date	e when revi	sion was i	ssued.				COMPUTER FILE : S:\projects\	.Harrington\dwg\217154_Harrington (DA Plans.dwg	

۰	1.105	£	1.2	
585	598.116	600	602.832	


-1.5m to -1m
-1m to -0.5m
-0.5m to 0m
0m to 0.5m
0.5m to 1m
1m to 1.5m

VOLUME SUMMARY

CUT =	11,750 m³
FILL =	197,200 m³
SELECT =	20,000 m³
NET =	165,450 m ³

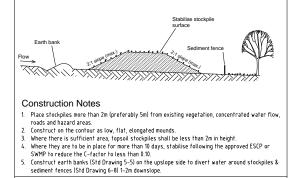
=	165,450 m³ SHORTFALL	

	CUT FILL PLAN		
SALL	SCALE : 10 20m SHEET No. :18	FILE : 21800155	HEET SIZE
R Pty Ltd	1:2000 for A3 sized plot JOB No. : 217154	DATE : Plotted 11:06 17/09/18	A3
NSULTANTS	COMPUTER FILE : S:\projects\Harrington\dwg\217154_Harrington D	IA Plans.dwg	

-	STANDARD S	SYMBOLS	
EROSION AN	ND SEDIMENT	CONTROL	PLANS

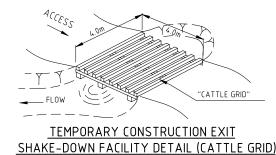
Construction Barrier Fencing	
Sediment Fence	
Straw Bale Sediment Filter	
Soil Stock Pile	
Extent Of Works	

—	BF	—
0	-0	-0
	/////	
S.s	S.P. 1)


---- EW

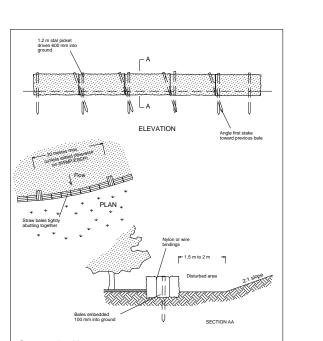
SALL	SCALE : 0 10 20m SHEET No. :19	FILE : 21800156	SHEET SIZE
R Pty Ltd 、	1:2000 for A3 sized plot JOB No. : 217154	DATE : Plotted 11:07 17/09/18	Α3
INSULTANTS	COMPUTER FILE : S:\projects\Harrington\dwg\217154_Harringtor	DA Plans.dwg	

SOIL & WATER MANAGEMENT NOTES


- 1. This plan is to be read in conjunction with other engineering plans and any written instructions that may be issued.
- 2. The contractor shall implement all soil erosion and sediment control measures prior to disturbance of the related catchment area and to the satisfaction of the Superintenden
- 3. All positions shown are indicative only and are best determined on site in conjunction with the superintendent. Variations will be permitted to best suit the circumstances.
- 4. Cleared vegetation must be disposed of by :-
- i) chipping or mulching for future landscaping and usage, or
- ii) transport to an approved landfill facility.
- 5. Temporary crossbanks (bunds constructed with earth, straw bales or sandbags), shall be constructed during roadworks to limit slope length, where possible, to 80 metres. These shall be constructed immediately prior to forecast rain and during temporary closure of the site, including weekends.
- 6. Temporary rehabilitation should be undertaken on disturbed areas where works have stopped and soils are expected to remain exposed for two months
- 7. Sediment barriers (e.g. sandbags or straw bales) should be located upstream of stormwater inlet pits prior to the road surface being paved and lands upslope being rehabilitated.
- 8. At the conclusion of each day sand bags are to be placed at the end of completed sections of road pavement to prevent scouring.
- 9. The contractor will inspect all erosion and pollution control works at least weekly and following every rainfall event greater than 5mm, providing particular attention to the following matters :
- (a) Ensure drains operate effectively and initiate repair as required. (b) Remove spilled sand (or other materials) from hazard areas, including lands closer than 5 metres from likely areas of concentrated or high velocity flows such as waterways and payed areas.
- (c) Ensure rehabilitated lands have effectively reduced the erosion hazard and initiate upgrading or repair as appropriate. (d) Construct additional erosion and/or sediment control works as might become necessary to ensure the desired protection is given to
- downslope lands and waterways, i.e. make ongoing changes to the plan. (e) Maintain erosion and sediment control measures in a functioning condition until all earthwork activities are completed and the site is rehabilitated.
- (f) Remove temporary soil conservation structures as a last activity in the rehabilitation program.
- 10. Utilise a single access only to the stock pile sites.
- 11. Drop inlets which do not outlet to silt traps shall be blocked until all works are completed.
- 12. Limit disturbed areas on site as much as possible at any one time, and stabilise competed areas as soon as practicable. Lands where works are not to continue for more than 20 working days must be rehabilitated. Such rehabilitation shall involve the spraying of a straw-bitumen mulch to the disturbed lands or equivalent
- 13. Access areas limited to a maximum width of 10 (preferably 5) metres
- 14. Conformity with this plan shall in no way reduce the responsibility of the Contractor to protect against water damage during the course of the contract
- 15. Topsoil and spoil shall be stockpiled in non-hazard areas and protected from surface run-off by diversion drains or similar. Stockpiles shall be surrounded on downstream sides by silt fencing. Stockpiles shall be suitably compacted to inhibit erosion. Where the stockpiling period exceeds four (4) weeks, the stockpile shall be seeded to encourage vegetation growth.
- 16. Topsoil shall be respread and stabilised as soon as possible. Disturbed areas shall be left with a scarified surface to encourage water filtration and assist keying in topsoi
- 17. The contractor shall provide a turf strip behind all kerb and gutter at completion of footpath formation
- 18. The contractor shall maintain grass cover until all works have been completed including the maintenance period, by frequent watering and mowing where required.
- 19. All drainage works shall be constructed and stabilised as guickly as possible to minimise risk of erosion.
- 20. Vehicular traffic shall be controlled during construction confining access where possible to proposed or existing road alignments plus 3 metres. Areas to be left undisturbed shall be marked off.
- 21. Site access shall be restricted to a nominated point. The construction of a shake-down area will be required at the entry to the site.
- 22. Facilities and/or equipment must be provided for the application of water to disturbed areas to minimise the generation of airborne dust from any area disturbed by construction activities.
- 23. Material removed from sediment control structures must be disposed of in a way that does not pollute waters or bushland.
- 24. Waste disposal containers must be provided on site for the collection and disposal of all industrial and domestic type wastes generated on site
- 25. Concrete wastes or washings from any concrete mixture or deliveries must not be deposited in any location where they can flow or be washed into waters
- 26. Runoff from vehicle, construction plant or mobile plant maintenance and cleaning areas must be contained, collected and disposed of in a manner to prevent entry into any waters, including sediment retention ponds
- 27. Fuelling of vehicles and construction plant must be carried out with an operator or driver present, and in a way that prevents any spillage occurring.
- 28. Prior to the controlled discharge (e.g. de-watering activities from excavations and sediment basins) of any water (groundwater or sediment laden water) from the site during construction, the following water quality objectives shall be achieved: * not exceed Total Suspended Solids of 50mg/L

 - * not exceed Turbidity of 50 NTU * range within pH value of 6 to 8
 - * be < 80% and > 20% saturation dissolved oxygen
 - have no odour or visible petro-chemical sheen
 - * have no visible litter or waste matter
 - * not contain any other contaminant, chemical or biological condition which causes any measurable adverse effect

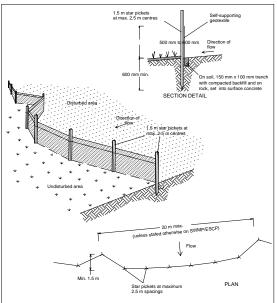
SD 4-1


STOCKPILES

NOT TO SCALE

Γ		<u> </u>				Γ
						Į
В	Updated Plans for Lodgement	DS	DS	AV*		17/
Α	Original Issue	DS	DS	AV*	BL*	05/09/1
REV	DETAILS OF AMENDMENT	DESIGNED	DRAWN	CHECKED		
*	Denote the original signature and dat					

TYPICAL SOIL & WATER MANAGEMENT PLAN NOTES



Construction Notes

- CONSTRUCTION INOTES
 1. Construct the straw bale filter as close as possible to being parallel to the contours of the site.
 2. Place bales lengthwise in a row with ends tightly abuting. Use straw to fill any gaps between bales. Straws are to be placed parallel to ground.
 3. Ensure that the maximum height of the filter is one bale.
 4. Embed each bale in the ground 75 mm to 100 mm and anchor with two 12 metre star pickets or stakes. Angle the first star picket or stake in each bale towards the previously laid bale. Drive them 600 mm into the ground and, if possible, flush with the top of the bales. Where star pickets are used and they portuge above the bales, ensure they are fitted with safely caps.
 5. Where a straw bale filter is constructed downslope from a disturbed batter, ensure the bales are placed to 22 metres downclone from the top.
- are placed 1 to 2 metres downslope from the toe Establish a maintenance program that ensures the integrity of the bales is retained - they could require replacement each two to four months.

SD 6-7

STRAW BALE FILTER

Construction Notes

- CONSTRUCTION PORCES as close as possible to being parallel to the contours of the site, but with small returns as shown in the drawing to limit the catchment area of any one section. The catchment area should be small enough to limit flow if concentrated at one point to 50 U/s in the design storm, usually the Dior event.
 2. Gut a 50-mm deep trench along the upslope line of the fence for the bottom of the fabric to be catched.
- entrenched. Drive 1.5m long star pickets into ground at 2.5m intervals (max) at the downslope edge of the trencl
- Ensure any star pickets are filted with safety caps. Fixuse any star pickets are filted with safety caps. Fix self-supporting geotextile to the upslope side of the posts ensuring it goes to the base of the trench. Fix the geotextile with wire ites or as recommended by the manufacturer. Only use geotextile specifically produced for sediment fencing. The use of shade cloth for this purpose is not activities. georgenerative spectroary produced for sconnent rendry. The disc of shock control that pupped satisfactory. Join sections of fabric at a support post with a 150mm overlap. Backfill the trench over the base of the fabric and compact it thoroughly over the geotextile.

```
SEDIMENT FENCE
                                       SD 6-8
```